SIEMENS

SIMATIC

S7

S7-1200 Programmable controller

System Manual

V4.2, 09/2016

A5E02486680-AK

Preface

Product overview

New features

STEP 7 programming
software

Installation

PLC concepts

Device configuration

Programming concepts

Basic instructions

Extended instructions
Technology instructions

Communication

Web server

Communication processor
and Modbus TCP

TeleService communication
(SMTP email)

Online and diagnostic tools

Technical specifications

Calculating a power budaet

Ordering Information

Device exchange and spare
parts compatibility

U0 WYX o ihonwn2o© o No o b owN =

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

A\DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

AAWARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

A\CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

AAWARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.
Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent

editions.
Siemens AG A5E02486680-AK Copyright © Siemens AG 2016.
Division Digital Factory ® 08/2016 Subject to change All rights reserved

Postfach 48 48
90026 NURNBERG
GERMANY

Preface

Purpose of the manual

The S7-1200 series is a line of programmable logic controllers (PLCs) that can control a
variety of automation applications. Compact design, low cost, and a powerful instruction set
make the S7-1200 a perfect solution for controlling a wide variety of applications. The S7-
1200 models and the Windows-based STEP 7 programming tool (Page 37) give you the
flexibility you need to solve your automation problems.

This manual provides information about installing and programming the S7-1200 PLCs and
is designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the manual
This manual describes the following products:
e STEP 7 V14 Basic and Professional|(Page 37)
e S7-1200 CPU firmware release V4.2

For a complete list of the S7-1200 products described in this manual, refer to the|technical
specifications|(Page 1359).

Certification, CE label, C-Tick, and other approvals

Refer to the technical specifications |(Page 1359) for more information.

Service and support

In addition to our documentation, Siemens offers technical expertise on the Internet and on
the customer support web site (http://support.industry.siemens.com).

Contact your Siemens distributor or sales office for assistance in answering any technical
questions, for training, or for ordering S7 products. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process
and industry, as well as about the individual Siemens products that you are using, they can
provide the fastest and most efficient answers to any problems you might encounter.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

http://support.industry.siemens.com/

Preface

Documentation and information

S7-1200 and STEP 7 provide a variety of documentation and other resources for finding the
technical information that you require.

The S7-1200 Programmable Controller System Manual provides specific information
about the operation, programming, and the specifications for the complete S7-1200
product family. In addition to the system manual, the S7-1200 Easy Book provides a
more general overview to the capabilities of the S7-1200 family.

Both the system manual and the Easy Book are available as electronic (PDF) manuals.
You can download or view the electronic manuals from the Siemens Industry Online
Support Web site (http://support.industry.siemens.com). The system manual is also
available on the Documents Disk that ships with every S7-1200 CPU.

The online STEP 7 information system provides immediate access to the conceptual
information and specific instructions that describe the operation and functionality of the
programming package and basic operation of SIMATIC CPUs.

The Siemens Industry Online Support Web site (http://support.industry.siemens.com)
provides access to the electronic (PDF) versions of the SIMATIC documentation set,
including the system manual, the Easy Book, and the STEP 7 information system.
Existing documents are available from the Product Support link. With this online
documentation access, you can also drag and drop topics from various documents to
create your own custom manual.

You can access online documentation by clicking "mySupport" from the left side of the
page and selecting "Documentation” from the navigation choices. To use the mySupport
Documentation features, you must sign up as a registered user.

The Update to the S7-1200 System Manual, edition 07/2016
(https://support.industry.siemens.com/cs/ww/en/view/108168658) has updates to the S7-
1200 Programmable Controller System Manual that occurred after publication.

The Siemens Industry Online Support Web site also provides FAQs and other helpful
documents for S7-1200 and STEP 7.

You can also follow or join product discussions on the Service & Support technical forum
(https://support.industry.siemens.com/tf/ww/en/?Language=ené&siteid=csius&treeLang=e
n&groupid=4000002&extranet=standard&viewreg=\WW&nodeid0=34612486). These
forums allow you to interact with various product experts.

— Forum for S7-1200
(https://support.industry.siemens.com/tf/ww/en/threads/237 ?title=simatic-s7-
1200&skip=0&take=10&orderBy=LastPostDate+desc)

— Forum for STEP 7 Basic
(https://support.industry.siemens.com/tf/ww/en/threads/24 3 ?title=step-7-tia-
portal&skip=0&take=10&orderBy=LastPostDate+desc)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

http://support.industry.siemens.com/
http://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/108168658
https://support.industry.siemens.com/tf/ww/en/?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://support.industry.siemens.com/tf/ww/en/?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://support.industry.siemens.com/tf/ww/en/threads/237?title=simatic-s7-1200&skip=0&take=10&orderBy=LastPostDate+desc
https://support.industry.siemens.com/tf/ww/en/threads/237?title=simatic-s7-1200&skip=0&take=10&orderBy=LastPostDate+desc
https://support.industry.siemens.com/tf/ww/en/threads/243?title=step-7-tia-portal&skip=0&take=10&orderBy=LastPostDate+desc
https://support.industry.siemens.com/tf/ww/en/threads/243?title=step-7-tia-portal&skip=0&take=10&orderBy=LastPostDate+desc

Preface

Security information

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement — and continuously maintain — a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines
and networks. Systems, machines and components should only be connected to the
enterprise network or the internet if and to the extent necessary and with appropriate security
measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens’ guidance on appropriate security measures should be taken into
account. For more information about industrial security, please visit
(http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/default.aspx).

Siemens’ products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends to apply product updates as soon as available and to
always use the latest product versions. Use of product versions that are no longer supported,
and failure to apply latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed under (https://support.industry.siemens.com/cs/us/en/).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 5

http://www.industry.siemens.com/topics/global/en/industrial-security/Pages/default.aspx
https://support.industry.siemens.com/cs/us/en/

Preface

S7-1200 Programmable controller
6 System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

PrEIACE ... ——————— 3
1 PrOUCE OVEIVIBW ...ttt aa e e e 27
1.1 Introducing the S7-1200 PLCooiii e e e e e e e s e e snrnaeeaaeeeeenans| 27
1.2 Expansion capability 0f the CPUccuuiiiiiiiiei et a e e 30
1.3 BaSIC HMI PANEISueiiiiiiiiiiitiit ittt e st ats s tststsessssssssnsnsnsnsnsnsnsnsnnnsnnnns| 32
NEW FEALUIES.ccceieeieeeeeee e 33
STEP 7 programming SOfIWAIEuuii s 37
3.1 SYSIEM FEQUINEIMENESeiiiiiiie et e e e e e st e e e e e e s e snnreaeeeaeeesessnnsneeaaaees] 38
3.2 Different views to make the Work €asier.............oooiiiiiiiiiii e | 39
3.3 EASY-10-USE T00ISuuuiiiiiiiiiiiiittt ettt et e tetaantntstnsesntnnnsnnnrnnnnnnnnnnnns| 41
3.3.1 Inserting instructions iNtO YOUr USEr Programueeeueuereimmeinrererernrnesrnenenrnrnrnnsrnsesnnnsnnens| 41
3.3.2 Accessing instructions from the "Favorites" toolbarcccccoviiiiiiiiii) 41
3.3.3 Creating a complex equation with a simple instruction.............cccocceiiiiiiici e 42
3.34 Adding inputs or outputs to a LAD or FBD inStructionevevviiiiiiiiiiiiiiieieiiieieeeveveveveeen | 44
3.3.5 Expandable iNStrUCHIONS.........coooiiie e 44
3.3.6 Selecting a version for an iNSrUCtiONueeiiiiiii e 45
3.3.7 Modifying the appearance and configuration of STEP 7cccoeoiiiiiiiiieiee e 45
3.3.8 Dragging and dropping between editors..........coooeeeii i 46
3.3.9 Changing the operating mode of the CPU.............oooiiiiiiiii e 47
3.3.10 Changing the call type fOr @ DBcooiiiiiiciiieie e e e e ea e 48
3.3.11 Temporarily disconnecting devices from a NetWOrk.............eeeeeeeiiiciiiiieeee e 49
3.3.12 Virtual unplugging of devices from the configuration..............c..ccoooiiii i, 50
34 Backward compatibilityccooooooioiiieeee] 51
4 INSEAIALION ... ————_— 53
4.1 Guidelines for installing S7-1200 EVICES.......c.uuiiiiiiiiie i 53
4.2 POWEE DUAGELttt s st ststststssstssssssssnsnsnsnsnsnsnnnnnnnnnne| 56
4.3 Installation and removal ProCEAUIEScouii i e e | 57
4.3.1 Mounting dimensions for the S7-1200 deViCeS.........c.coiuiiiiiiiiie e | 57
4.3.2 Installing and removing the CPU ... | 61
4.3.3 Installing and removing an SB, CB, Or BB..........cocoiiiiiiiieiiiiee e | 63
4.3.4 Installing and removiNg @n SM ... e e | 65
4.3.5 Installing and removing @ CIM OF CPouiiiiiiiiic et e e e e e | 67
4.3.6 Removing and reinstalling the S7-1200 terminal block connectorcccccoeviiiiieieneennnnn] 68
4.3.7 Installing and removing the expansion Cable..................uuuiiiiiiiiiiiiiiiie s 69
4.3.8 TS (TEleSErviCe) AdAPLEr......cciiiiiiiitiiie e e e e e e e e et e e e e e s e e enareaeees) 71
4.3.8.1 Connecting the TeleService adapterccuuviiiiii i 71
4.3.8.2 INstalling the SIM Cardoeiiiiiiiiiee e e e e e e e s st e e e e e e e e snnraaeees) 73
4.3.8.3 Installing the TS adapter uniton a DIN rail...........ccccoooiiiiiiiiie e 74
4.3.8.4 Installing the TS adapter 0N @ PANEI........o.coi i e e 75
S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 7

Table of contents

4.4 WINNG QUIAETINES ...ttt e e e e saneee s 76
5 PLC CONCEPLS ..o 83
5.1 Execution of the USEr Program ... 83
5.1.1 Operating modes of the CPU ... 87
5.1.2 Processing the scan cycle in RUN MOde..........c..ooiiiiiiiii e 91
5.1.3 Organization DIOCKS (OBS)ccoiiiiiiiiiiiiee ettt e et e e e e e 92
5.1.3.1 Program CYCIE OBcoo it 92
5.1.3.2 3 = o (1] O = SRR 93
5.1.3.3 Time delay INterruPt OB ...t 93
5.1.3.4 CyYClC INTEITUPL OB ... ettt e e e bt e e s sbb e e e sbaeeeeaaes 94
51.3.5 Hardware interrupt OB ... ettt e e e e e e e e e e e e eeeae e s 95
5.1.3.6 Time error iINterruPt OB ... e e e e e e s e e e e e e e ennes 96
5.1.3.7 Diagnostic error interrupt OBooouiiiiii e 97
5.1.3.8 Pull or plug of MOAUIES OBcoiiiiiiiiii e 100
5.1.3.9 Rack or station failure OBcooi e e 101
5.1.3.10 TiME Of dAY OB ...ttt e e s e et e e e et e e anteeeeneeeaneeeeneeeeanneeanneean 102
5.1.3.11 S = 10U T = OSSO 102
5.1.3.12 LU0 £= L= S S 103
5.1.3.13 PrOfIlE OB ... ettt ettt et e et e e ea et e e nee e e te e e anee e e neeeneeeenneeanneeannean 103
5.1.3.14 MC-Servo and MC-Interpolator OB..............oeiiiiiii e e e 103
5.1.3.15 (O o { ST T A o PSR 104
5.1.3.16 MC-POSESEIVO ...ttt e et e e e b e e e et e e e aabee e e e anneas 105
5.1.3.17 Event execution priorities and QUEUINGoiiiiiiiiiiie e 105
514 Monitoring and configuring the cycle time ... 109
5.1.5 L0 o U I 14 T=T0 o] YRR PPPPRPRR 110
5.1.5.1 System and CIOCK MEMOTYcoiiiiiii et e e 112
5.1.6 DIagnostiCs DUTFETcoiiee e e 114
51.7 TimME Of dAY CIOCKeeieiieie et e e e e e e 115
5.1.8 Configuring the outputs on @ RUN-t0-STOP transition.............ocooceiiiiii e 116
5.2 Data storage, memory areas, 1/O and addreSSingccccveeeiiiiiieiieee e 117
5.2.1 Accessing the data of the S7-1200...........uiiiiiiiiii e 117
5.3 Processing of analog ValUEScooiiiiiiiiiii e 123
54 D= I Y 0 1= T O PP 125
5.4.1 Bool, Byte, Word, and DWord data typesooeiiiiriiiiiieee e 126
5.4.2 INtEgEr data tYPES 127
5.4.3 Floating-point real data types. ..o 127
544 Time and Date data fyPesS.......uuiiiiiiiii e 128
5.4.5 Character and String data typescooiuiiiiiii e 130
5.4.6 AITAY At TYPE .. e 132
5.4.7 Data structure data type........ooo i 133
5.4.8 PLC data tYPe ...t 133
549 Variant pointer data tyPe . ..o e 134
5.4.10 Accessing a "slice" of a tagged data typeooooiiiiiii 134
5.4.11 Accessing a tag With @an AT OVEIIAYccuuiiiiiiii e 135
5.5 6] aTe J= W 4 aT=T 0 T YA o= 1 (o PP 138
5.5.1 Inserting @ memory card in the CPU ... 139
55.2 Configuring the startup parameter of the CPU before copying the project to the
(01T Te] YA o= (o PO PUPPPPPPRRN 142
5.5.3 TrANSTEE CANQ ...t e e s e e e r e e e aanes 142

S7-1200 Programmable controller
8 System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

5.54 Program CaArdeeiiiiiii ettt e et e et e e ann e abn e e e enneees 145
5.5.5 Firmware UPAateoooo oot e e e e e e e e e e nne | 148
5.6 Recovery from a [0St PASSWOIdccooiiiiiiiiiiii e 151
6 DeVice CONTIGURALION.coiiiiriii i e s r e s s rr e s s nr e e s senrnesnenns 153
6.1 INSErtING @ CPU. ...ttt e e b e e e s eneeees 154
6.2 Uploading the configuration of a connected CPU.............coooiiiiiiiiiiiiiie e 156
6.3 Adding modules to the configuration ... 158
6.4 Configuration CONTIOL...........eii i 159
6.4.1 Advantages and applications of configuration controlcccocceiiiiieiiiiiiee 159
6.4.2 Configuring the central installation and optional modulescccociiiiiiiiiii) 159
6.4.3 Example of configuration CONtrolc.ooiiiiiiii e 166
6.5 ChangiNg @ DEVICEccooiueiiiiiiiii ettt st e s e e e enee e e e ennee 170
6.6 Configuring the operation of the CPU ..o 170
6.6.1 OVEIVIBW ...ttt ettt b e e e sttt e e e a bt e e e e a bt e e e e bt e e e e enbe e e e anbe e e e anbeeeeennne 170
6.6.2 Configuring digital input filter iMes ... 172
6.6.3 PUISE CALCN ... 174
6.7 Configuring MUltilingual SUPPOTTeiiiiiiie e 175
6.8 Configuring the parameters of the Modules ... 177
6.9 Configuring the CPU for communiCationcooiiiiiiiiiii e 179
6.10 Time SYNCArONIZAtIONccoiuiiiii et e s sneee e | 181
7 (g o7 2= 1y 10011 g T 7o) o= o £ 183
7.1 Guidelines for designing @ PLC SYSteMccoiiiiiiiiiiiee e 183
7.2 StruCturing YOUI USEI PrOGIraMcciiiiuiieeeiiiee e ettt ettt et e et e et e e e e abe e e enbe e e s anbeeeeennee 185
7.3 Using blocks to Structure your Programcoooeeeieiieiie i 187
7.3.1 Organization DIOCK (OB).......cciiiiiiiiiiii e 188
7.3.2 FUNCHON (FC) ittt bttt e s sbbe e e abbe e e e snneees 190
7.3.3 FUNCHON DIOCK (FB) ...ciiiiiiiiiiiee e 190
7.3.4 D=1 e o] oo [q (1] = SRRSO | 192
7.3.5 Creating reusable code DIOCKSoiiiiiiiiii e 194
7.3.6 Passing parameters t0 DIOCKS...........ooi i 195
7.4 Understanding data CONSISTENCY........cooiuiiiiiiiiiie e 198
7.5 Programming l8NGUAGE.oouuiiiiiiiiie ettt e e snneees 199
7.5.1 [IE= o o L=l ToT ot { Y) OO PR OPPPPPPPI | 199
7.5.2 Function Block Diagram (FBD)ooiiiiiiiiiiie e 200
7.5.3 ST OSSPSR 201
7.5.3.1 SCL Program @AIOr.......cooiiiiii e 201
7.5.3.2 SCL expressions and OPEratioNSooi e ee e e e e e e e e e e e e e enneeeeeeaees] 202
7.5.3.3 Indexed addressing with PEEK and POKE inStructions............ccooiiiiiiiiiinienc e 206
7.54 EN and ENO for LAD, FBD @nd SCL........coiiiiiiiieiiee e siee e e smeee e s | 208
7.6 [(o1 (Tex 1 o] o O PUPPPPPPPRPPI | 210
761 Access protection for the CPU. ... 210
7.6.2 EXternal [0ad MEeMIOTYcooiiiiiii ettt e e eaeeees 212
7.6.3 KNOW-hOW ProteCHIONcoeeeeeee e e e e eee e e e e e e e e | 213

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 9

Table of contents

10

76.4 (@7 0] o)A o] o] 1= 1 1o o IS 214
7.7 Downloading the elements of your programccccoeiiiiiiiiiiiie e 216
7.8 Synchronizing the online CPU and offline project............ccoiii e, 219
7.9 Uploading from the online CPU ..o 221
7.91 Comparing the online CPU to the offline CPU ... 221
7.10 Debugging and testing the program....... ..o 222
7.10.1 Monitor and modify data in the CPUccooiiiiiii e 222
7.10.2 Watch tables and force tables..... ... 223
7.10.3 Cross reference 10 SNHOW USAJEcooiiuiiiiiiiiiii ettt 223
7.10.4 Call structure to examine the calling hierarchycccoiiii i 225
BasiC iNSIrUCHIONS ... 227
8.1 Bit [0QIC OPEIratioNS......coiiiiiiii it 227
8.1.1 Bit 10QIC INSIIUCHIONS ..o 227
8.1.2 Set and reset INSIIUCHIONSiiiii e 230
8.1.3 Positive and negative edge inStruCtionsc.cooiiiiiiiiii e 233
8.2 B0 0= o] 0 1= =1 £ (o o - SR 236
8.3 (@700 1 (=T o] 01T =1 (o o - S 244
8.4 (07T gl o= =1 (0] ge] oT=T =14 o] o 1T 250
8.41 Compare values INSIrUCHONS 250
8.4.2 IN_Range (Value within range) and OUT_Range (Value outside range)c.ccccceeenee. 251
8.4.3 OK (Check validity) and NOT_OK (Check invalidity)cccueriiiiiiiiiiiiieiiiece e, 252
8.44 Variant and array comparison iNStrUCHIONScoouiiiiiiiiiii e 253
8.4.41 Equality and non-equality comparison instructions..............ooooiiiii i 253
8.4.4.2 NUll comparsion INSTIUCLIONSoiiiii e e e e e e e e e 254
8.44.3 IS_ARRAY (CheCK fOr ARRAY) ... ittt ettt et e e e e eae e e see e e emteeesnneeeneeas 254
8.5 V7= 11 I 0T T 1T o L SRS 255
8.5.1 CALCULATE (CalCUIALE)eeeeeeieiiiee ettt e e 255
8.5.2 Add, subtract, multiply and divide inStructions.............cccooer i 257
8.5.3 MOD (return remainder of diVISION)..........cuiiiiiiiiie e 258
8.5.4 NEG (Create twos COMPIEMENE)uuiiiiiiiiie e e 259
8.5.5 INC (Increment) and DEC (DeCrement)..........ocuueeiiiiiiieiiiiie e 259
8.5.6 ABS (FOrm absOlUte VAIUE)coiiiiiiiiiii e 260
8.5.7 MIN (Get minimum) and MAX (Get Maximum)c.cooiiiiieiiiiie e 261
8.5.8 LIMIT (Set limit VAIUE)eeieeeeee ettt e e e e e e smee e e neeeeeneeas 262
8.5.9 Exponent, logarithm, and trigonometry instructions............cccocee i 263
8.6 Y[1Y) o 1= = o] o -SSR 265
8.6.1 MOVE (Move value), MOVE_BLK (Move block), UMOVE_BLK (Move block

uninterruptible), and MOVE_BLK_VARIANT (Move bIOCK)c.cooiiiiiiiiiiiiiiiiiiccieeee 265
8.6.2 DTSy = {2 RS 269
8.6.3 RS T= T4 =SOSR 272
8.6.4 FILL_BLK (Fill block) and UFILL_BLK (Fill block uninterruptible)............cccccoiiiiiiniinnnnn 275
8.6.5 SWAP (SWAP DYLES) ..t e e 276
8.6.6 LOWER_BOUND: (Read out ARRAY [OW liMit).......cueeiiiiiiiiiiieie e 277
8.6.7 UPPER_BOUND: (Read out ARRAY high limit)cooiiiiiiiiii e 279
8.6.8 Read / Write memory iNStruCtioNSooiiiiii e 281
8.6.8.1 PEEK and POKE (SCL ONIY)utiiiiiiieieeiiete ettt et 281
8.6.8.2 Read and write big and little Endian instructions (SCL)..........cccccoiiiiiiinii e 283

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

8.6.9
8.6.9.1
8.6.9.2
8.6.9.3
8.6.10
8.6.10.1

8.7
8.71
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.6.1
8.7.6.2

8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7
8.8.8
8.8.9
8.8.10
8.8.10.1
8.8.10.2
8.8.10.3
8.8.10.4
8.8.10.5
8.8.10.6
8.8.10.7
8.8.10.8
8.8.10.9
8.8.10.10

8.9

8.9.1
8.9.2
8.9.3
8.9.4

8.10
8.10.1
8.10.2

Variant INSITUCIONS ...t e e e e e e e e e e e e e nneeees 285
VariantGet (Read VARIANT tag value)cooiiiiiiiiiiiiiiiiiece e | 285
VariantPut (Write VARIANT tag Value)cueeiiiiiiiiiiic e | 286
CountOfElements (Get number of ARRAY elements).........coooueiiiiiiiiiiiiieceee e 287
Legacy INSIIUCHIONScouiiiiiiiieiee ettt e sne e e e e sneeees 288
FieldRead (Read field) and FieldWrite (Write field) instructions............cccccoviiiiiincnnnnndd 288
CONVEISION OPEIatIONSeeiiiiiiiii ettt st e s snbe e e e enee e e e eanee 290
CONV (CONVEIt VAIUB) ...ttt 290
Conversion iNStructions fOr SCLcoiiiiii e 291
ROUND (Round numerical value) and TRUNC (Truncate numerical value).......................| 294
CEIL and FLOOR (Generate next higher and lower integer from floating-point number) .../ 295
SCALE_X (Scale) and NORM_X (NOrmMaliZe)cocueeiiiiiiiiiiiiei et 296
Variant conversion iNSITUCLIONSooiiii i | 299
VARIANT_TO_DB_ANY (Convert VARIANT t0 DB_ANY)ccoiiiiiiiiiiieieiiiee e 299
DB_ANY_TO_VARIANT (Convert DB_ANY t0 VARIANT)ooiiiiiiiiiiiieeeeee e 300
Program control OPErationscoiiiiiioiiiiie e 302
JMP (Jump if RLO = 1), JMPN (Jump if RLO = 0), and Label (Jump label) instructions,.302
JMP_LIST (Define Jump lIS) .ocooeeeie e 303
SWITCH (JUMP diStrIDULON) ... e 304
RET (REEUIMN) -ttt ettt e et e e saee e et e e smeeesmee e e eeeesmeeeeaneeaanseesnneeeanneesnneens| 306
ENDIS_PW (Enable/disable CPU passSWOrdS)cooiuuiiiiiiiiiiiiiiee e 307
RE_TRIGR (Restart cycle monitoring time)oceeeiiiiiii e 309
STP (EXIt PrOGIaM)eeeieiieiie ettt e ettt e s e s e e e s e s e e e e enbe e e e anbeeeeennee 310
GET_ERROR and GET_ERROR_ID (Get error and error ID locally) instructions| 311
RUNTIME (Measure program FUNEIMIE).........ocuueieiiiieieiiiiiee e et e s e e e eeeees 314
SCL program control Statements ..o 316
Overview of SCL program control statements ..o 316
IF-THEN State@ment ... et e e e e e e e e e e e e e e e nnneeee 317
CASE StatemEnt 318
FOR StatemMent....... ettt e s e e 320
WHILE-DO StatemeEntottt et e e e 321
REPEAT-UNTIL Statementoooiiiiii e 322
CONTINUE StatemEntoooiiiiiiiiee ettt e e e e e e e e e 323
I =] €= 1 (=1 0 0= 0 SR 324
GOTO StAIEMENT. ... e e e e bt e e e nbe e e e eenbeeeeeanne) 325
RETURN StatemMENt ...t e e e 325
WOrd 10gIC OPEratioNScooiuiiiiiiiiiie ettt e e st ee e e eneeee e | 326
AND, OR, and XOR logic operation inStructionscccocueeiiiiiieiiiiiiee e 326
INV (Create ones COMPIEMENE)oiiiiiiiiiiiii e 327
DECO (Decode) and ENCO (Encode) inStruCtionscoocueeiiiiiiiiiiniiiee e 327
SEL (Select), MUX (Multiplex), and DEMUX (Demultiplex) instructionscccccccoceee 329
Shift @Nd rOtate. ..o e e e a e e 332
SHR (Shift right) and SHL (Shift left) inStructions.............cccco i) 332
ROR (Rotate right) and ROL (Rotate left) inStructionscoooiiiiiiiiiiieced 333

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 11

Table of contents

12

Extended iNStruCtioNS........ceciiiiiiii i | 335
9.1 Date, time-of-day, and clock fUNCLIONS.......... .o 335
9.1.1 Date and time-of-day iNStruCtiONSocuiiiiiii e 335
9.1.2 ClOCK FUNCHIONS ...ttt e e et ee e e s bt e e e snbeeeeaans 338
9.1.3 TimeTransformationRule data Structure ... 342
9.14 SET_TIMEZONE (Set tIMEZONE)eiiiieiieiiie ettt e e e e e sneeesneeans 343
9.1.5 RTM (RUNEME MELEIS) . 344
9.2 StriNG @Nd ChAraCEr........eiiiie e 346
9.2.1 StrING dAta OVEIVIEW ...t e e anne e s 346
9.2.2 S_MOVE (Move character String)c.eeeoiiiiiiiiieiee e e 346
9.2.3 String conVersion INSTFUCHIONSiiiiiiiii e 347
9.2.31 S_CONYV, STRG_VAL, and VAL_STRG (Convert to/from character string and number)

INSTIUCTIONS ...ttt e e ra bt e e e s aa bt e e e rabe e e e s anbe e e e sanbeeeeaans 347
9.2.3.2 Strg_TO_Chars and Chars_TO_Strg (Convert to/from character string and array of

CHAR) INSIIUCHIONS ...t e e st e e e sanreeeeaaes 357
9.2.3.3 ATH and HTA (Convert to/from ASCII string and hexadecimal number) instructions.......... 359
9.24 String operation INSTFUCLIONSiiiiii e 361
9.2.41 MAX_LEN (Maximum length of a character string)...........cccccooiiiiii 361
9.24.2 LEN (Determine the length of a character string) ... 362
9.24.3 CONCAT (Combine character StringS)ccieiiiiiiiiiieie e 363
9.24.4 LEFT, RIGHT, and MID (Read substrings in a character string) instructions..................... 364
9.245 DELETE (Delete characters in a character string)...........cccccooiiiiiiiii e 365
9.24.6 INSERT (Insert characters in a character string)ccoooiiiiiiii i 366
9.24.7 REPLACE (Replace characters in a character string)cocoeeiiiieiiiniiee e 367
9.24.38 FIND (Find characters in a character string)...........occociiiiiiiii e 369
9.2.5 RUNtiME INFOrMation ... e e 370
9.2.5.1 GetSymbolName (Read out a tag on the input parameter)cccooiiiiiieee 370
9.2.5.2 GetSymbolPath (Query composite global name of the input parameter assignment) 373
9.25.3 GetlnstanceName (Read out name of the block instance) ..o, 376
9.254 GetlnstancePath (Query composite global name of the block instance)..........ccccccccouneee. 379
9.25.5 GetBlockName (Read out name of the bIOCK)ocuiiiiiiiiiiii e, 381
9.3 Distributed /0 (PROFINET, PROFIBUS, OF AS-i).....coiiiiiiieiiieee et 384
9.3.1 Distributed /0O INSITUCIONS.........eiiiiiie e e 384
9.3.2 RDREC and WRREC (Read/write data record)..........cccoociiiiiiiiiinieeeeee e 385
9.3.3 GETIO (Read ProCeSS iMAJE)ueeiiiiuiiieeiiiieeeatieee e rtiee e abeee et ee e s sabeee e s sabeeeessnbeeeesanreeeeaans 388
9.34 SETIO (Transfer ProCeSS iIMAGE) .. .cceiiuueeieiiuiiiieiiieie ettt ee ettt ettt e e e e e e snneeeeanneees 389
9.3.5 GETIO_PART (Read proCess iMage @rea)..........ueeueiiuueeeeiiiieeeeiieeeeesteeeesaieeeessieeeessneeeeesns 390
9.3.6 SETIO_PART (Transfer process image area)couueeeeiiueeeeiniieeeiiiieeesneeeessieeeessnneeens 392
9.3.7 RALRM (RECEIVE INTEITUPL) ... ittt 394
9.3.8 D_ACT_DP (Enable/disable PROFINET 1O devViCes)c.cceeiuiiieiiiiiiieiiiee e 398
9.3.9 STATUS parameter for RDREC, WRREC, and RALRMccooiiiiiiiiiiiiee e 403
9.3.10 L 13T SRS SSTRRRR 408
9.3.101 DPRD_DAT and DPWR_DAT (Read/write consistent data)............cccccovviiiiiiiiiiiiieec 408
9.3.10.2 RCVREC (I-device/l-slave receive data record)ccoooiiiiiiiiiiiiiiiee e 411
9.3.10.3 PRVREC (l-device/l-slave make data record available)............ccccoiiiiiiiiiiiiee 413
9.3.10.4 DPNRM_DG (Read diagnostic data from a PROFIBUS DP slave)..........ccccccceiiiiiiieenenn. 416
9.4 o @ 1=t =T (o U PP P TPPP 419
9.5 L1 (=T 5 (1] o) SRS 420
9.51 ATTACH and DETACH (Attach/detach an OB and an interrupt event) instructions 420
9.5.2 (O3t [To g1 (=T 4 U] o] £ T PO PUPPPOPPRR 424

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

9.5.2.1
95.2.2
9.5.3
9.56.3.1
9.56.3.2
9.56.3.3
9534
9.54
9.5.5

9.6
9.6.1

9.7
9.71
9.7.2
9.7.3
9.74
9.7.5
9.7.6
9.7.7
9.7.7.1
9.7.8
9.7.8.1
9.7.9
9.7.10

9.8

9.8.1
9.8.2
9.8.3
9.84

9.9
9.91
9.9.1.1
9.91.2
9.91.3
9.9.1.4
9.9.2
9.9.2.1
9.9.2.2
9.9.23
9.9.24
9.9.25

9.10

9.10.1
9.10.2
9.10.3
9.10.4

9.11
9.11.1

SET_CINT (Set cyclic interrupt parameters)..........coooueeiiiiiiieiiie e 424
QRY_CINT (Query cyclic interrupt parameters)ccoooieiiiriiene e 426
Time of day INTEITUPLSooiiie e eeneee e | 427
SET_TINTL (Set time of day interrupt) ..o 428
CAN_TINT (Cancel time of day interrupt)coooiiiiiiii e 429
ACT_TINT (Activate time of day interrupt) ... 430
QRY_TINT (Query status of time of day interrupt) ... 431
Time delay INtEITUPESoi i e e ee e | 432
DIS_AIRT and EN_AIRT (Delay/enable execution of higher priority interrupts and

asynchronous error events) iNStrUCtiONS..........ocuiii e 435
N F= 14 12 L PP OPPRPUPPPR | 436
Gen_UsrMsg (Generate user diagnostic alarms)occcueviiiiiii i) 436
Diagnostics (PROFINET or PROFIBUS)uiiiiiiiiiiiiiie e 439
DIiagnostic INSIIUCHIONScooiiiiii e 439
RD_SINFO (Read current OB start information)ccccooiiiiiii e 440
LED (Read LED Status)cocuoiiiiieie e | 450
Get_IM_Data (Read the identification and maintenance data)ccccoeeeiiiiiiiininnd 451
Get_Name (Read the name of a PROFINET IO device)cccoooieiiiiniiiiieceeed 453
GetStationInfo (Read the IP or MAC address of a PROFINET IO device).........cccoeveeeennd] 460
DeviceStates INSrUCIONeiii e 468
DeviceStates example configurations............c..ooi i 469
ModuleStates INSIIUCHIONooiiiii e 474
ModuleStates example configurations..............coooiiiiii e 476
GET_DIAG (Read diagnostic information).............o.cceiiiiiiiiii e 480
Diagnostic events for distributed I/O ... 486
PUISE ettt b et e e be e e e e anree e e annneees] 487
CTRL_PWM (Pulse width modulation)ccueiiiiiiiii e 487
CTRL_PTO (Pulse train OUEPUL)eeiiiiiiieeiie e 488
Operation of the pulSE OUIPULS.........eiiiiiii e e e 492
Configuring a pulse channel for PWM or PTO ... 494
Recipes and Data 10gS......cooiuiiiiiiiiie e 498
=T o7 o= SRR | 498
RECIPE OVEIVIEW........eiiiiiie ettt e e sbe e snne e e e eneeees 498
RECIPE EXAMPIE ...t 499
Program instructions that transfer recipe data...........ccociiii 502
ReCipe eXample PrOgramM..........ii ettt e e ne e e sneeees 506
= =T 0T LS RO PPPPRRI | 509
Data 10g reCord SrUCIUIEeiiiiiiiie e 509
Program instructions that control data 10gs ..o 510
WOrking With data 10gScoouuiiiiiie e | 525
Limit to the size of data [0g fillesS..........coouiiiiiii e 526
Data 10g eXample Programoceeeeiiieeieiie ettt e e s sbee e e e snnee e anneees] 529
Data BIOCK CONTIOLcooiiiiiii ittt e e e e eneeees 534
CREATE_DB (Create data bIOCK)ccoiuiiiiiiiiiie e 534
READ_DBL and WRIT_DBL (Read/write a data block in load memory) instructions..........| 538
ATTR_DB (Read data block attribute)coooiiiiiiiiiii e 541
DELETE_DB (Delete data bloCK)couiiiiiiiieii e | 542
AdAress NaNAIINGcoouueiiiii e e e enneee e | 544
GEO2LOG (Determine the hardware identifier from the slot)..................ccco 544

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 13

Table of contents

10

14

9.11.2 LOG2GEOQO (Determine the slot from the hardware identifier)...........c.cccooiiiinii e 546
9.11.3 I02MOD (Determine the hardware identifier from an 1/0 address)cccccoevveeiiiiiieeeenee 548
9.11.4 RD_ADDR (Determine the 10 addresses from the hardware identifier)cccoceeene 550
9.11.5 GEOADDR system data type.........ooiiiiiiiiiiie e 551
9.12 Common error codes for the Extended inStructions ... 553
Technology INSIUCLIONSuuiiiiiii i e e s e e e e s s e s e e e e nnnasaseeseennnnnnn] 555
10.1 Counting (HIgh-Speed COUNTEIS)couuiiiiiiiiii et 555
10.1.1 CTRL_HSC_EXT (Control high-speed counter) inStruction...........cccoccueeeiiiiieiiiiieee e 556
10.1.1.1 INSTIUCTION OVEIVIEW ...ttt e b e e e e s e e 556
10.1.1.2 = 03T o = SRS 557
10.1.1.3 CTRL_HSC_EXT Instruction System Data Types (SDT)......ccooiiiiiiiiiiiiiiiieee e 561
10.1.2 Operating the high-speed COUNENooiiiiiii e 566
10.1.2.1 Synchronization fUNCHONcooiii e 566
10.1.2.2 GAte FUNCHION ...ttt e e et e e s rab e e e s abbe e e e sanreeeeaans 567
10.1.2.3 LO7=T o (8] = {1 Lo 1o o S 569
10.1.2.4 (@70 0] 0= T4 = {1] o 1 o] o S 570
10.1.2.5 Y o] 0] o= 4] i 1S 571
10.1.3 Configuring a high-speed COUNLET..........ccoiiiiiiiii e 572
10.1.3.1 TYPE OF COUNTING ...ttt sttt e e s e e e eabre e e e eanees 573
10.1.3.2 (O] 01T =11 aTo [o] g F= TS -SSR 574
10.1.3.3 INIEAL VAIUES ...t e b e e et e e e ebee e e e e 578
10.1.3.4 10T 01U 10T T 1T o 1SS 578
10.1.3.5 L@ 101010} 01 T34 T) o SO REE 579
10.1.3.6 L1 E=T o 0] o Q=YY= o | S 580
10.1.3.7 Hardware input pin @SSIgNMENtooo o e e e 580
10.1.3.8 Hardware output pin @SSIGNMENTo.ooiiieee e e e e 582
10.1.3.9 HSC iNnput MEmMOrY addrESSESccciiiiiiiiiiiiee ettt 583
10.1.3.10 Hardware identifier..... ... e 583
10.1.4 Legacy CTRL_HSC (Control high-speed counter) instructioncccocoeiiiiiiiiniine e 584
10.1.4.1 INSTIUCTION OVEIVIBW ...ttt e b e e e e e s ebre e e e eneees 584
10.1.4.2 L o O I I 2SS 586
10.1.4.3 HSC cUITent COUNE VAIUEooiiiiiii e e 587
10.2 L 1o o1 1o PP 588
10.2.1 Inserting the PID instruction and technology object............cccooiiiiiiii 590
10.2.2 L 1 O] o 1] o =T PSR 592
10.2.2.1 PID_Compact iNSrUCLIONcoouiiiiiiiii e 592
10.2.2.2 PID_Compact instruction Process value limitScccoociiiiiiiiiiiiiiee e 596
10.2.2.3 PID_Compact instruction ErrorBit parameters ..o 597
10.2.24 PID_Compact instruction Warning parameters...........cccoocueieiiiiii e 599
10.2.3 1 T 1S =T o SRS 600
10.2.3.1 PID_3StEP INSIIUCTION ... et 600
10.2.3.2 PID_3Step instruction ErrorBit parameters............oocooiiiiiiiiiiii e 607
10.2.3.3 PID_3Step instruction Warning parameters............occcce i 609
10.2.4 T =Y o o SRS 610
10.2.41 o | I =10 o N1 1 1 0T 4o) o RS 610
10.2.4.2 PID_Temp ErrorBit parameters....... ..o 619
10.2.4.3 PID_Temp Warning parameEtersoooo e e et e e e e e e e e neeeeeaae s 621
10.2.5 Configuring the PID_Compact and PID_3Step controllerscccooueeeiiiiieiiiiiiee e 622
10.2.6 Configuring the PID_Temp CONrOIEr.........c..eiiiiiieii e 625
10.2.7 Commissioning the PID_Compact and PID_3Step controllerscccccooiiiiiiiiiiiieee 640

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

10.2.8 Commissioning the PID_Temp CONroleroooiiiiiiiie e 642
10.3 MOLION CONTIOL ...ttt e et e e bt e e e s enneees 653
10.3.1 [0 F= T o To T PRSP PPPPRPPI | 658
10.3.2 Configuring @ PulISE GENEIAtONc.uiiiiiiiiie e e 661
10.3.3 Open 100Pp MOLION CONTIOL......oo et e e e e e e e e e e e ennneeeeeaees] 662
10.3.3.1 ConfiguriNG the @XIScooiiiiiii e 662
10.3.3.2 (6701101101117 1o] o] o R PP PP PSRN 666
10.3.4 Closed 100p MOtioN CONLIOL e e e e e e e eeeeaes 672
10.3.4.1 ConfiUrING the @XIScooiiiiiii e e 672
10.3.4.2 SEIVOOBS ...ttt et e s bb e e e anee e e e enee 679
10.3.4.3 Speed controlled OPEerationo e e a 681
10.3.4.4 I =Y = 1o T o] o o] o SRR 684
10.3.4.5 SIMUIBEION @XIS ...ttt et e e e st e e e enbe e e e ennee 689
10.3.4.6 D= 1= =T =T o] =1 1 o] o TSRS | 691
10.3.4.7 Axis control using the TM Pulse module............oociiiiiiiiiiiiiiee e 702
10.3.5 Configuring the TO_CommandTable_PTO..........ooi e 708
10.3.6 Operation of motion control for S7-1200.........coooi e 711
10.3.6.1 CPU outputs used for motion CONtrol.............eiiiiiiiii e 711
10.3.6.2 Hardware and software limit switches for motion controlcccciiiid 713
10.3.6.3 [(o031 o T T ORI 723
10.3.6.4 = 7 T4 S UTOTR 730
10.3.7 Motion control INSIUCHIONScoiiiiiei e 731
10.3.7.1 MC INSTrUCHION OVEIVIEWooiiiiiiiiiiiiei ettt 731
10.3.7.2 MC_Power (Release/bIOCK @XIS)cciiiuuiiiiiiiiiiiiiiiee ettt 733
10.3.7.3 MC_Reset (CONFIFM ©ITOT)...... .ttt 736
10.3.7.4 MC_HOME (HOME @XIS).....eeiiiuiiieiiiiiiee ettt ettt e s e s e s nea e e nneees 737
10.3.7.5 MC_Halt (PAUSE @XIS)uveeeiiiiiiiieiiiie ettt e e e s e e e s neeees 740
10.3.7.6 MC_MoveAbsolute (Position axis absolUtely).........c..ouiiiiiiiiii e 742
10.3.7.7 MC_MoveRelative (Position axis relatively) ... 745
10.3.7.8 MC_MoveVelocity (Move axis at predefined veloCity) ... 747
10.3.7.9 MC_Movedog (Move axis in JOg MOAE).........ccuuiiiiiiiiiiiiiiiie et 749
10.3.7.10 MC_CommandTable (Run axis commans as movement SEQUENCE)cceeeeruveeeernnnen 751
10.3.7.11 MC_ChangeDynamic (Change dynamc settings for the axis)c..ccccceeiviieiiiinnnniin 754
10.3.7.12 MC_WriteParam (write parameters of a technology object)ccccocooiiiiiiiiniild 756
10.3.7.13 MC_ReadParam instruction (read parameters of a technology object)...........ccccccccrni 758
10.3.8 Monitoring active COMMEANGSouuiiiiiiiiii et eneee e e e eneeees 760
10.3.8.1 Monitoring MC instructions with a "Done" output parameter............cccooceiviiniiiiiiien e 760
10.3.8.2 Monitoring the MC_VelOCitYcoouiiiiiii e 764
10.3.8.3 Monitoring the MC_MOVEJOQcoouiiiiiiiiii e 768
10.3.9 ErrorIDs and Errorinfos for motion Control.............ceeiiiiiiiiii e 772
(B %o To o 41U g o= i o7 o T PP 799
11.1 Asynchronous communication CONNECHIONScooiiiiiiiiiiiiiiiiee e | 801
11.2 PROFINET ...ttt ettt ettt e et e et e e e te e e sm e e e aeeeaneeesmseeeanseeeseeanseeeanseesanneesnneens| 804
11.2.1 Creating @ NetWork CONNECHIONeiiiiiiiiiei e 806
11.2.2 Configuring the Local/Partner connection path ... 807
11.2.3 Assigning Internet Protocol (IP) addreSSesc.eeviiiiieiiiiiieiiiieee e | 810
11.2.3.1 Assigning IP addresses to programming and network devices...........cccccvvveeeiiiieeennieeen 810
11.2.3.2 Checking the IP address of your programming deViCe............ccueieriiiiiiniieee e 812
11.2.3.3 Assigning an IP address to @ CPU ONliNe...........cceoiiiiiiiiiiiieiiee e | 813
11.2.3.4 Configuring an IP address for a CPU in your project...........cooiiviiiiiiiiniiiec e 814

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 15

Table of contents

16

11.2.4
11.2.5
11.2.6
11.2.7
11.2.8
11.2.8.1
11.2.8.2
11.2.8.3
11.2.8.4
11.2.8.5
11.2.8.6
11.2.8.7
11.2.8.8
11.2.8.9
11.2.8.10
11.2.8.11
11.2.8.12
11.2.8.13
11.2.8.14
11.2.8.15
11.2.8.16
11.2.8.17
11.2.9
11.2.9.1
11.2.9.2
11.2.9.3
11.2.9.4
11.2.10
11.2.10.1
11.2.11
11.2.111
11.2.11.2
11.2.11.3
11.2.12
11.2.121
11.2.12.2
11.2.12.3
11.2.12.4
11.2.13
11.2.13.1
11.2.13.2
11.2.13.3
11.2.13.4
11.2.13.5
11.2.14
11.2.141
11.2.14.2
11.2.14.3
11.2.15
11.2.15.1
11.2.15.2
11.2.15.3

Testing the PROFINET NEIWOIKoiiiiiiiiie e 819
Locating the Ethernet (MAC) address on the CPU ..o 820
Configuring Network Time Protocol (NTP) synchronizationccccceeiiiieiiiiiees 822
PROFINET device start-up time, naming, and address assignment...............cccceevieeennen 824
Open USer COMMUNICALIONoiiii et eannns 825
L (o] (oot] - PP PP PR 825
TCP @nd ISO 0N TCP ..ttt ettt et e et e e et e e e ae e e sneeesteeeanneeanenans 826
Communication services and used port NUMDErS. ... 827
A NOC MOTE ...ttt et ebb e e bt e e e enes 828
Connection IDs for the Open user communication instructions...........cccccccvvviiiiiiiiiiinnnnnn.. 828
Parameters for the PROFINET CONNECLIONcooiiiiiiiiiiiiiiiee e 832
TSEND_C and TRCV_C iNSIrUCIONScoiiiiiiiiiiiiiee et 836
Legacy TSEND_C and TRCV_C iNStrUCtIONScoouiiiiiiiiie e 848
TCON, TDISCON, TSEND, and TRCV iNStruCtionscccceioeieiiireiieeriee e see e 856
Legacy TCON, TDISCON, TSEND, and TRCV instructionscccccceviiiiiiiereeeiiiiieeeen. 867
T_RESET (Terminate and re-establish an existing connection) instruction 878
T_DIAG (Checks the status of connection and reads information) instruction..................... 880
TMAIL_C (Send an email using the Ethernet interface of the CPU) instruction 885
L SO 894
TUSEND and TURGCNV ...ttt et e et e et e e e e e e snee e emeeeesnneeamneeaneeans 895
L IO 1N USRS 901
Common parameters for iINSIrUCHONSooiiie e 912
Communication with @ programming deVIiCe...........c.oiiiiiiiiiiiii e 913
Establishing the hardware communications connection..............cccoccviiiiniii i 914
Configuring the AEVICESuiiiiiiii e 914
Assigning Internet Protocol (IP) addreSSes ..o 915
Testing your PROFINET NEIWOTKcooiiiiiiiiiiii e 915
HMI-t0-PLC COMMUNICAIONeiiiiiiiie e 916
Configuring logical network connections between two devices.........cccccevverciiieeeee e, 917
PLC-t0-PLC COMMUNICAtION ...ttt e 918
Configuring logical network connections between two devices...........ccccoovieiiiiiiiiiiee, 919
Configuring the Local/Partner connection path between two devices...........cccoceeiinieeenn. 919
Configuring transmit (send) and receive parameters.ccccceviiieeeiniiie e 919
Configuring a CPU and PROFINET O deVICecccoiiuiiiiiiiiiieiiiie e 922
Adding @ PROFINET 1O AEVICEeeeiiiiiiiie e eiie et e et e et e seee e sneeeeneeans 922
Assigning CPUS and deVICE NAMES..........uuiiiiiiiiieiiiiee ettt 923
Assigning Internet Protocol (IP) addreSSEescoouiiiiiiiiiiiiiieeeciee e 924
Configuring the 1O CYCIE tIME........ooiiii e e 924
Configuring a CPU and PROFINET [-deViCeccoiiiiiiiiiiiiiiiiiee e 926
[-device FUNCHONAIILYoooiueieii e 926
Properties and advantages of the -deViCe ... 927
Characteristics Of an [-deVICE.........ccoiiiiiiiii e 928
Data exchange between higher- and lower-level 10 systemccccooiiiiiiiiiniiiceee, 931
Configuring the [-deVICEooi e 933
SNAFEA GEVICES ... ettt e et e e e e 936
Shared device FUNCHONAIILYoccueiiii e 936
Example: Configuring a shared device (GSD configuration)cccccooviiiiiinie e 939
Example: Configuring an I-device as a shared deviceccccceeiiiiiiinii i 945
Media Redundancy ProtoCol (MRP) ... 954
Media redundancy with ring tOPOIOGIEScccoiiiiiiiiiii e 954
Using Media Redundancy Protocol (MRP)ccooiiiiiiii e 956
Configuring media redUNAANCYooiuiiiiiie et sbeee e 959

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

11.2.16
11.2.16.1
11.2.16.2
11.2.17
11.2.17.1
11.2.18
11.2.19
11.2.20
11.2.21

11.3
11.3.1
11.3.2
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.4
11.3.5
11.3.6

11.4
11.41
11.4.1.1
11.41.2
11.41.3
11.41.4
11.4.2
11.4.2.1
11.4.2.2
11.4.3
11.4.4

11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.4.1
11.5.4.2

12 Web server
12.1
12.2
12.3
12.4
12.5

12.6

12.6.1
12.6.2
12.6.3

A (o101 11T O PPV PPPPUPRPRN 962
S7 routing between CPU and CP interfaces ... 963
S7 routing between two CP interfaces.........coooviiiiiiiii e 963
Disabling SNIMP ... ittt ettt e e e eesae e e s teeesneeeenneeeseeeenneeeanneesnneens| 964
Disabling SNIMP ...ttt et e e e e eeeaeeesteeesneeeeneeeseeeenseesanneesnneens| 965
D E= o | Lo 1] 112U | 967
Distributed /O INStrUCHIONSoiiie e e e e reeee e e e e e e eeee | 967
Diagnostic INSITUCHONS ... e e e e e e e e 967
Diagnostic events for distributed 1/O ... 967
PROFIBUS ...ttt ettt ettt ettt ettt e et e e et e e s e e e ameeeeseeeameeeemneeeaneeeamseeeanneeanneas 968
Communications services of the PROFIBUS CMS...........cccooiiiiiiiiiiiiieec e 970
Reference to the PROFIBUS CM user manualscccooiiiiiiiiiiiiiieeeeeceeee e 971
Configuring a DP master and slave deviCe............oooiiiiiiiiiiii e 971
Adding the CM 1243-5 (DP master) module and a DP slave...........cccocociiiiiiiiniienenieend 971
Configuring logical network connections between two PROFIBUS devicesccccccce..... 972
Assigning PROFIBUS addresses to the CM 1243-5 module and DP slave........................| 972
Distributed I/O INStrUCHIONScoiiiiee e e e e e e eeeeee e e e e e e een | 974
Diagnostic INSITUCHONS ... e e e eeeee e e e e e e eenn | 974
Diagnostic events for distributed...............oooiiiiiii e 974
A S ettt et et e te e e a et e e et e e teeeaneeeaaeeeaneeeanteeaaneeeaneeaaneeans 975
Configuring an AS-i master and slave deviCe............ccccooiiiiiiiii e 976
Adding the AS-i master CM 1243-2 and AS-i slave.........ccococeeiiiiiiiiiec e 976
Configuring logical network connections between two AS-i devices........ccccccceevviiiennn 977
Configuring the properties of the AS-i master CM1243-2...........ccooiiiiiiniee e 977
Assigning an AS-i address t0 an AS-i SIaVeooiiiiiiiiiiiie e 978
Exchanging data between the user program and AS-i slaves..........cccoceveeiiiiccieeeeeennd 981
STEP 7 basic configuration ... 981
Configuring slaves With STEP 7uiiii e 982
Distributed 1/O INSTIUCHIONScoiiiiiiie e 984
Working with AS-i ONlINE tOOIScooiiiiiii e 984
S A oo 2 012 010 o1 {o7= 11T o 1SR 986
GET and PUT (Read and write from a remote CPU)ccooiiiiiiiiiii e 986
Creating an S7 CONNECHIONuiiiiiiiie e e 991
Configuring the Local/Partner connection path between two devices.........cccccevvvicviieennnl 992
GET/PUT connection parameter assignment ..o 992
CoNNECHiON PAr@MELEIS. ...oooi ittt e e e e e e e e e e e e e e e ennneeeeaae s 993
Configuring @ CPU-t0-CPU S7 CONNECHIONuiiiiiiiiiiiiiiie e 995
.. 1001
Enabling the WED SEIVEroo e e 1003
Configuring WED SEIVEIN USEIScoouiiiiiiiiiie ittt 1005
Accessing the Web pages from @ PC ... 1007
Accessing the Web pages from a mobile device ... 1009
Using a CP module to access Web pages ... 1010
Standard Web Pages ... | 1011
Layout of the standard Web pages...........ooo e 1011
BaSIC PAGES ...ttt e e e ae e e e anee 1012
Logging in @nd USEr PriVIIEJESueiiiiiiiiie ittt 1013

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 17

Table of contents

18

12.6.4
12.6.5
12.6.6
12.6.7
12.6.8
12.6.9
12.6.10
12.6.11
12.6.12
12.6.13

12.7
12.71
12.7.2
12.7.2.1
12.7.2.2
12.7.23
12.7.2.4
12.7.2.5
12.7.2.6
12.7.2.7
12.7.2.8
12.7.2.9
12.7.2.10
12.7.2.11
12.7.3
12.7.4
12.7.5
12.7.6
12.7.7
12.7.8
12.7.9
12.7.9.1
12.7.9.2
12.7.9.3
12.7.9.4
12.7.9.5
12.7.9.6
12.7.9.7
12.7.10
12.7.10.1
12.7.10.2
12.7.10.3
12.7.11

12.8

12.8.1
12.8.2
12.8.3
12.8.4
12.8.5

INEFOAUCTION .ttt et e sttt e e e aabe e e e eaareeeeans 1017
S - o SRS 1018
DHAGNOSHICS. ..ottt ettt e e aa et e e aa et e e bt e e aa e e e e eabreee e e 1019
DIagnOSHC BUFFETt 1022
Module INFOrMAtIONooiuiiii e e e ee e 1023
(07071011018] o] [o7= 111] s [F PP ORI 1027
TAG SEALUS .. 1031
WaALCh HADIES ... e 1033
ONIINE DACKUP ..t 1035
FHlE BIOWSEN ...ttt a e ra et e e e bt e e e s b bt e e e s bb e e e e ebbe e e e abreeeeaan 1037
User-defined WED PagEsoouiiiiiiiiie e 1040
Creating HTIML PAgESeoiiiiiiiie ittt e e e e e e e 1041
AWP commands supported by the S7-1200 Web server ..., 1042
Reading variables ... 1044
WIAHING VArTADIES ... e 1045
Reading special variablesooo i 1047
Writing special variablescoooiiiiiiii e 1048
Using an alias for a variable reference ... 1049
DefiniNg ENUM LYPES ...coiiiiiii ettt e e bt e e e snreee e 1050
Referencing CPU variables with an enum type ... 1051
Creating fragMeNnts ... 1052
IMPOrting fragMENTS ...t e e e e 1053
Combining defiNItIONSooiuuiii s 1054
Handling tag names that contain special characterscccooiiiiiii e 1055
Configuring use of user-defined Web pages ..o 1057
Configuring the ENtry PAgE.......coo i 1058
Programming the WWW instruction for user-defined web pages...........ccccceviiieiiiienens 1059
Downloading the program blocks to the CPUcooiiiiiii e 1060
Accessing the user-defined Web pages ... 1061
Constraints specific to user-defined Web pagesccccce i 1062
Example of a user-defined Web Pagecoooiiiiiiiiiiiii i 1063
Web page for monitoring and controlling a wind turbine............c.ococciiii i, 1063
Reading and displaying controller data.............ccccooiiiiiiiiii e 1065
USING @N ENUM LYPE ...ttt ettt e e et e e s eneeee e s ennseeesnneeee s 1066
Writing user input to the CONtrollerooiiiiii e 1067
Writing @ Special Variablecoooiiiiiiii e 1068
Reference: HTML listing of remote wind turbine monitor Web page...........ccccceeiiiieeenne 1068
Configuration in STEP 7 of the example Web page ..o 1073
Setting up user-defined Web pages in multiple languagesccccviiiiniiic e 1074
Creating the folder STTUCIUIEooo i 1074
Programming the language SWItCh..............ooiiiiiiiiiii e 1075
Configuring STEP 7 to use a multi-language page structurecccceeiiiieiiiiiien e, 1078
Advanced user-defined Web page control.............coooiiiiii e 1078
(07070511211 o1 £ PP RPOTPPPO 1082
(0L T Yo N F= AV 2= S T 4 o) S 1083
Feature restrictions when the Internet options do not allow cookies.............ccccccoiiiinee. 1083
Rules for entering tag names and valuescoooiiiiiiiiiiiiiiie e 1084
Importing the Siemens security certificate ... 1085
Importing CSV format data logs to non-USA/UK versions of Microsoft Excel................... 1086

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

13 Communication processor and ModbUS TCP...........cuuuiiiiiiiiiiiiiiiiiiiiirerrreer .. 1087
13.1 Using the serial communication interfaces ... 1087
13.2 Biasing and terminating an RS485 network connector..............ccoieiiiiiii i) 1088
13.3 Point-to-point (PtP) communiCationcoiuiiiiiiii e 1090
13.3.1 PtP, Freeport COMMUNICAtIONuuuuuuiiiiiiiiiiiiiiiiiiiieierer e ebev e abaveesraeersssrssesssssarsssssrsrens| 1090
13.3.2 3964(R) COMMUNICATION.......oiiiiiiiiiiiiiee ettt e e saneeee e | 1092
13.3.3 Configuring the PtP Freeport communication............coooiiiiiiiiiiii e 1093
13.3.3.1 Managing flOW CONTIOL........oooiiiiii e 1095
13.3.3.2 Configuring transmit (send) parameters ... 1096
13.3.3.3 Configuring receive parameters..........oooiiiiiiiiiiie e 1097
13.3.4 Configuring 3964(R) comMmMUNICALIONcoiiiiiiiiiiiie e 1105
13.3.4.1 Configuring the 3964(R) communication POrtScccoviieiiiiiiiie e 1105
13.3.4.2 Configuring the 3964(R) priority and protocol parametersocccceeiiiiiiiiiie i) 1106
13.3.5 Point-to-point iNStIUCLIONSooiiii e e e | 1108
13.3.51 Common parameters for Point-to-Point instructions.............ccoooi i) 1108
13.3.5.2 Port_Config (Configure communication parameters dynamically)cccccooviiciennennnnnnd] 1110
13.3.5.3 Send_Config (Configure serial transmission parameters dynamically)ccccccoeoiinien] 1112
13.3.54 Receive_Config (Configure serial receive parameters dynamically)ccccoeereennind] 1115
13.3.5.5 P3964_Config (Configuring the 3964(R) protoCol)cccoiiiiiiiiiiie e 1120
13.3.5.6 Send_P2P (Transmit send buffer data) ..o 1122
13.3.5.7 Receive_P2P (Enable receive MesSSages)........cuuuiuiiiiiiiiiiiiiiiie e 1126
13.3.5.8 Receive_Reset (Delete receive bUffer) ... 1128
13.3.5.9 Signal_Get (Query RS-232 Signals).........ccueeiiiiiiiiiiiiieeeee e | 1129
13.3.5.10 Signal_Set (Set RS-232 SigNalS)ccoiiuuiiiiiiiieeiie e 1130
13.3.5.11 GEt_F@AUIES .ottt ettt e e e e b e e e annee s 1131
13.3.5.12 SEt_F@ALUIES....co ittt e e 1132
13.3.6 Programming the PtP communicationsoooiiiiiiiiii e 1134
13.3.6.1 POIING @rchit@CIUIE ...t 1135
13.3.7 Example: Point-to-Point communiCation ..o 1136
13.3.7.1 Configuring the communication Module ... 1137
13.3.7.2 RS422 and RS485 operating MOUEScooiiiiiiiiiiie e 1140
13.3.7.3 Programming the STEP 7 programooo i 1143
13.3.74 Configuring the terminal emulator............cccoiiiii e 1145
13.3.7.5 Running the example Program ... e 1145
13.4 Universal serial interface (USS) communicationcccoiiiiiiiiiie e 1146
13.4.1 Selecting the version of the USS instructions............cccccoiiiiiiiiiie e 1149
13.4.2 Requirements for using the USS protocol ... 1150
13.4.3 USS INSIIUCHIONS ...ttt e et e e e e e e enbeeeeeennee 1153
13.4.3.1 USS_Port_Scan (Edit communication using USS network)ccccoiiiiiiiiiiiinen 1153
13.4.3.2 USS_Drive_Control (Swap data With drive) ... 1154
13.4.3.3 USS_Read_Param (Readout parameters from the drive)ccccooiiiiiiiiiiiiiiidd 1157
13.4.3.4 USS_Write_Param (Change parameters in the drive)...........cccoiiiiieen) 1158
13.4.4 USS SEAtUS COUESoiiiiiiiiiiiiiii ettt e e e s ebbe e e s enbee e e e eanee 1160
13.4.5 USS general drive setup requIremMeNntsS.........coooiiiiiiiie o eeeee e e | 1162
13.4.6 Example: USS general drive connection and setupocccveiieiiiiiiiiiieeeeeeeee 1162
13.5 ModbuUS COMMUNICATIONcoiiiiiiiieii e 1166
13.5.1 Overview of Modbus RTU and Modbus TCP communicationccccoeeeeiiiieeeinieen 1166
13.5.2 1Y oo | U= O = USRS 1169
13.5.2.1 OVBIVIBW ...ttt ettt ettt e e e ettt e e e ea b et e e e aab et e e e anbeeeesanbeeeesanbeeeesanneeeeans| 1169
13.5.2.2 Selecting the version of the Modbus TCP instructionsccccceiiiieiiiiieeiiee e 1170

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 19

Table of contents

20

13.5.2.3
13.5.24
13.5.3

13.5.3.1
13.5.3.2
13.5.3.3
13.5.34
13.5.3.5

13.6
13.6.1
13.6.1.1
13.6.1.2
13.6.1.3
13.6.1.4
13.6.1.5
13.6.1.6
13.6.1.7
13.6.1.8

13.7
13.71
13.7.2
13.7.3
13.7.3.1
13.7.3.2
13.7.3.3
13.7.3.4
13.7.4
13.7.5

13.8
13.8.1
13.8.2
13.8.3
13.8.3.1
13.8.3.2
13.8.4
13.8.4.1
13.8.4.2
13.8.4.3
13.8.4.4
13.8.4.5

13.9
13.9.1
13.9.2
13.9.3
13.9.3.1
13.9.3.2
13.9.3.3
13.9.4
13.9.4.1
13.9.4.2

MOdDbUS TCP INSIIUCHIONSccoiiiiiie it 1171
MOAbUS TCP @XaMIPIES.....ooii it e et e e e e e e e e e e e e e e e nnneeeas 1185
1Y oo | U= o I RS 1191
OVBIVIBW ..ttt ettt ettt e a bttt e o ettt e e b et e e bt e e e e nb bt e e e aabae e e e aanes 1191
Selecting the version of the Modbus RTU instructionscccoiiiiiii i 1193
Maximum number of supported Modbus SIaves ... 1193
Modbus RTU INSrUCHIONS ..o 1194
MOdbUS RTU €XAMPIES ..ot e e e e e e e e e e e e e e e e nnneeeas 1213
Legacy PtP communication (CM/CB 1241 ONlY).....ocuiiiiiiiiiiiiiiee e 1217
Legacy point-to-point iNSrUCHIONSooiiiiiiiii e 1218
PORT_CFG (Configure communication parameters dynamically)cccccooveeeiiiieenns 1218
SEND_CFG (Configure serial transmission parameters dynamically)cccccoeveeenee 1220
RCV_CFG (Configure serial receive parameters dynamically)cccocooeeiiieiininnns 1221
SEND_PTP (Transmit send buffer data)..........cccoouiiiiiiiii e 1226
RCV_PTP (Enable receive MeSSagEs)cuuiiiiiiiiiiiiei ittt 1229
RCV_RST (Delete receive bUFfer) ... 1231
SGN_GET (Query RS-232 SIgNalS)ueeiiiiiiiieiiie et 1232
SGN_SET (Set RS-232 SIgNQIS)ceiuieeiiiieiiee ettt e e e eneeenneeas 1233
Legacy USS communication (CM/CB 1241 ONlY)ueeiiiiiiiieee e 1234
Selecting the version of the USS instructions ... 1235
Requirements for using the USS protoColooo i 1236
Legacy USS iNSIrUCIONSoiiiiiii et 1239
USS_PORT (Edit communication using USS network) instruction.............ccccococeeiiieenns 1239
USS_DRYV (Swap data with drive) inStructioncccooiiiiiiiii e 1240
USS_RPM (Readout parameters from the drive) instruction..............cccoiiiiiiins 1243
USS_WPM (Change parameters in the drive) instruction............cccoccceeiiiiiiii s 1244
Legacy USS Status COUEScoiiiiiiiiiiii e 1246
Legacy USS general drive setup requiremMentsc.cccooieiiiiiiiee e 1248
Legacy Modbus TCP cOMMUNICALIONcouuiiiiiiiiiieiiie e 1249
L@ YT = PP 1249
Selecting the version of the Modbus TCP insStructionscccooiiiiii i 1249
Legacy Modbus TCP iNStrUCHIONScooiiuiiiiiiiiie e 1250
MB_CLIENT (Communicate using PROFINET as Modbus TCP client)cccccceviieeene 1250
MB_SERVER (Communicate using PROFINET as Modbus TCP server)ccccocoeeenne 1257
Legacy Modbus TCP @XaMPIEScccoiuuiiiiiiiiiie ettt 1264
Example: Legacy MB_SERVER Multiple TCP connectionscccceiiiiieiiiiieeeiiiiieeens 1264
Example: Legacy MB_CLIENT 1: Multiple requests with common TCP connection......... 1265
Example: Legacy MB_CLIENT 2: Multiple requests with different TCP connections........ 1266
Example: Legacy MB_CLIENT 3: Output image write request...........cccooiveeiiiiiieeiiiieenes 1267
Example: Legacy MB_CLIENT 4: Coordinating multiple requestscccccovieeeiiiieenne 1268
Legacy Modbus RTU communication (CM/CB 1241 0Nly)occueeiiiiiiiiiiiieeeieee e 1269
(O YT = P PP PPR 1269
Selecting the version of the Modbus RTU instructionscccooiiiiiii 1269
Legacy Modbus RTU INSITUCLIONScoiiiiiiiiiiiiiie et 1270
MB_COMM_LOAD (Configure port on the PtP module for Modbus RTU)cccocveeeee 1270
MB_MASTER (Communicate using the PtP port as Modbus RTU master) 1272
MB_SLAVE (Communicate using the PtP port as Modbus RTU slave)cccccceviieeenne 1278
Legacy Modbus RTU €XaMPIES..........eeiiiiiiiiiiiiieee ittt sttt sabeee e 1285
Example: Legacy Modbus RTU master program...........cocueeeiiieeeiiiieee i 1285
Example: Legacy Modbus RTU slave program ... 1287

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

13.10 Industrial Remote Communication (IRC)ooiiiiiiiiiii e 1288
13.10.1 TeleCONIrOl CPS OVEIVIEWevviiiiiiiiiiiiiiieieieieieeetesesesesesesesssesssssessssssssssssssssssssssssssssrssesnsnns| 1288
13.10.2 Connection to0 @ GSM NEIWOIK........coooiiiiiieie e 1291
13.10.3 Applications of the CP 1242-7 ... e e e e e | 1293
13.10.4 Other properties of the CP 1242-7 o e 1294
13.10.5 FUurther informMation..............uuuiii e ebebeaaasbsbsrssssnsasssssnrnres 1294
13.10.6 A CCESSONIES. ... uuuuuuiieiiititii ettt aaaaaaaataaetaaeeaaetatebebessssbesebstsbsbstsbsbsbsbsbsbnbsbsbnbnbnbnbnbnbnrnnnnnrn 1295
13.10.7 Configuration examples for teleCcontroloocueii i 1296
14 TeleService communication (SMTP emalil)cccuuiiiiiiiiiiiiiiiiiiiiiiiiiieereeeeeseeseeeeeeeeeer s 1301
14.1 TM_Mail (Send email) iINSTrUCHIONeiiiiiiiiii e 1301
15 Online and diagnOSHIC tOOISuuiiiiiiiiiiiiiiiiieiiiiir e eeeeeeeeeeseesssssssssssnne) 1309
15.1 StAtUS LEDS ..o 1309
15.2 Going online and connecting 10 @ CPU... ... 1313
15.3 Assigning a name to a PROFINET 10 device online............cccoviiiiiiiiiiiiieiniieee e 1314
154 Setting the IP address and time of day ..o 1316
15.5 Resetting to factory Settingsoooeiii e 1317
15.6 Updating fIMMWAIEcooiiiiie e e e 1318
15.7 Formatting a SIMATIC memory card from STEP 7 ..o 1320
15.8 CPU operator panel for the online CPU...............oooooiii) 1321
15.9 Monitoring the cycle time and MemOory USAgeccoieiiiiiiiiiiiiiieeeeiiee e eeeeee e 1321
15.10 Displaying diagnostic events in the CPU ... 1322
15.11 Comparing offline and online CPUS............uiiiiiii e 1323
15.12 Performing an online/offline topology compariSon.............ccoiiiiiiiiiie i) 1324
15.13 Monitoring and modifying values in the CPU...........cccooiiii e 1325
15.13.1 Going online to monitor the values inthe CPU...........cccooiiiiii e 1326
15.13.2 Displaying status in the program editor ... 1327
15.13.3 Capturing a snapshot of the online values of a DB for restoring values..............ccccccccce. 1327
15.13.4 Using a watch table to monitor and modify values inthe CPU............cccccoiiiiiiid] 1329
15.13.4.1 Using a trigger when monitoring or modifying PLC tagscccoveiiiiiiiiiiieeeiieeeee) 1330
15.13.4.2 Enabling outputs in STOP MOEcooiiiiiiiiiie e 1331
15.13.5 Forcing values in the CPU ...t e e e | 1332
15.13.5.1 USING the fOrce tableoiiiii e 1332
15.13.5.2 Operation of the FOorce fUNCHONoo e 1333
15.14 Downloading in RUN MOEooiiiiiiiiie et e e e e e e e e | 1335
15.141 Prerequisites for "Download in RUN mode" ... 1336
15.14.2 Changing your program in RUN MOdeccoociiiiiiiiiiiiiiie e | 1337
15.14.3 Downloading selected DIOCKSoiiiiiiiiiiii e 1338
15.14.4 Downloading a single selected block with a compile error in another block......................| 1340
15.14.5 Modifying and downloading existing blocks in RUN mode..........cccceeiiiiiiiniininiee e 1341
15.14.6 System reaction if the download process fails.............ccooiiiiiii e 1344
15.14.7 Considerations when downloading in RUN mMOde ..o 1345
15.15 Tracing and recording CPU data on trigger conditions.............occcoiiiiiiiiiiii e 1347
15.16 Determining the type of wire break condition from an SM 1231 module...............cccceeeind] 1349

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 21

Table of contents

22

15.17 Backing up and restoring @ CPU..........coo i 1352
15.17 1 Backup and restore OptioNnSoooiiiii i 1352
15.17.2 Backing up @n onling CPUuiiiiiiii et 1354
15.17.3 RESLOMNNG @ CPU ...ttt et e e s rbb e e e enreeeeaans 1356
Technical SPeCIfiCatiONSccciiii] 1359
A1 Siemens Online Support WeDbSIte e 1359
A.2 General technical specifiCationso 1359
A3 PROFINET interface X1 port piNOULSoeeeieieeeee e 1369
A4 (O L I s e SO RRSTTR 1370
A4d.1 General specifications and features. ... 1370
A4.2 Timers, counters, and code blocks supported by CPU 1211C ..., 1372
A43 Digital inputs and OULPULS ... 1376
A4d.4 ANGIOG INPULES <.t e e bt e e e s bt e e e ab bt e e e eb e e e e e abeeeeeaae 1377
A4.41 Step response of the built-in analog inputs of the CPU ... 1378
A4d42 Sample time for the built-in analog ports of the CPU...........cccoiiiiiiii e 1378
A4.43 Measurement ranges of the analog inputs for voltage (CPUS)..........ccccccviiiiiiiiieiiniieenn, 1378
A45 CPU 1211C WIrNG AiagramS. ...c.oo e iiiieeee et e e e e e e e e e e e e e e e e e e s e nneneeeeaeeeaaannnes 1379
A5 L0 U e 2y 2 PR RS 1382
A.5.1 General specifications and features............ooo e 1382
A5.2 Timers, counters, and code blocks supported by CPU 1212C ... 1384
A53 Digital iINputs and OULPULS......ooii e e e e e e 1388
A54 ANAIOG INPULES <.t e bbb 1390
A5.41 Step response of the built-in analog inputs of the CPU ... 1390
A542 Sample time for the built-in analog ports of the CPU.........ccccoiiiiii e 1391
A543 Measurement ranges of the analog inputs for voltage (CPUS)..........ccccciieiiiiieciiiinenn. 1391
A.5.5 CPU 1212C WiriNG dIagIramMS.uueiei ittt e e e e s aaneeeas 1392
A.6 (O O iy L SRR 1395
A.6.1 General specifications and features..........oooo i 1395
A.6.2 Timers, counters and code blocks supported by CPU 1214Ccccoiiiiiiiiiieeeeeeee 1397
A.6.3 Digital iNputs and OULPULS.......ooii et a e 1401
A.6.4 LN F= Lo T T o U TSP PPP 1403
A.6.4.1 Step response of the built-in analog inputs of the CPU ... 1403
A.6.4.2 Sample time for the built-in analog ports of the CPU...........cccooiiiiiiiii e, 1404
A.6.4.3 Measurement ranges of the analog inputs for voltage (CPUS).........cccccoviiieiiiiiieiiiiieenee 1404
A.6.5 CPU 1214C WiIriNG diagramS. ... eeeeeeeee et et e e e e e s e e e e e e s e nnneeeeeeee e e e nnnneeas 1405
A7 (O O I By T OO ESOTRRRTR 1409
A.71 General specifications and features. ..o 1409
A.7.2 Timers, counters and code blocks supported by CPU 1215C.........oooiiiiiiiiieiiiiieeeee, 1411
A.7.3 Digital inputs and OULPULS ... e e e 1415
A7.4 P gt 1 oTo I Ta o101 E=TE=Ta o o011 01U S 1417
A.7.41 Step response of built-in analog inputs of the CPU ..o 1417
A7.42 Sample time for the built-in analog ports of the CPU..........ccccoiiiiiiiie e 1418
A7.43 Measurement ranges of the analog inputs for voltage (CPUS)..........cccccoiiiiiiiiciiiieenn, 1418
AT74.4 Analog output SPECIfICAtIONSeiiiiiii e 1419
A.7.5 CPU 1215C WIiriNG dI@QramMS.ueiiiiiiieee ittt ettt st e e e e snneee s 1420
A.8 (07 O I s 4 TR 1425
A.8.1 General specifications and features........ ..o 1425
A.8.2 Timers, counters and code blocks supported by CPU 1217C ..., 1427

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

A8.3
A8.4
A8.41
A8.4.2
A8.4.3
AB8.44
A8.4.5
A.8.5
A.8.6
A8.7

A9

A.9.1
A9.2
A9.3
A9.4
A9.5

A10

A.10.1
A.10.2
A.10.3
A.10.4
A.10.5
A.10.6
A10.7

A1
A11A1
A11.1.1
A11.1.2
A11.2
A11.21

A2
A12A1
A121.1
A12.1.2
A12.1.3
A12.1.4

AA13

A13.1
A13.2
A13.3
A13.4

A14
A141
A14.2
A14.3
A14.3.1
A143.2
A1433
A143.4

Digital inputs and OUIPULSoiiiiii e e e e e e | 1430
Analog iNPuts and OULPULSooiiii i e e e e e ee e e e e e e eane | 1435
Analog input SPECIfICAtIONSoii i | 1435
Step response of built-in analog inputs of the CPU ... 1435
Sample time for the built-in analog ports of the CPU ... 1436
Measurement ranges of the analog inputs for voltage (CPUS)..........cccocieiiiiiniiiiineennn) 1436
Analog output SPeCifiCationSooi e | 1436
CPU 1217C Wiring diagramscciiiiiiieiiiiiiee ittt e et ee e sneeeesssnneeee e | 1438
CPU 1217C Differential Input (DI) detail and application example.............ccccccveieiriiiiend] 1440
CPU 1217C Differential Output (DQ) detail and application example...........cccccceeriiinnens] 1441
Digital signal Modules (SIMS)cooeiiiiiiii et e e e e e eeeeeeeeeeane | 1442
SM 1221 digital input SPeCIfiCatioNS.........ooo i 1442
SM 1222 8-point digital output specifications ... 1444
SM 1222 16-point digital output specifications ... 1446
SM 1223 digital input/output V DC specifications............ccccceeiiiiiiiiiiieieeeeeee e 1451
SM 1223 digital input/output V AC specificationsccccceeeiiiiiie e 1456
Analog signal MOAUIES (SIMS) ... 1459
SM 1231 analog input module SpecifiCationscccciiiriie i 1459
SM 1232 analog output module specificationseoiieiiiiiiii e 1464
SM 1234 analog input/output module specificationsccoooeciiieiii i) 1466
Step response of the analog INPULSoooiiieiii e 1470
Sample time and update times for the analog iNPULS ..o 1470
Measurement ranges of the analog inputs for voltage and current (SB and SM)| 1471
Measurement ranges of the analog outputs for voltage and current (SB and SM)| 1472
Thermocouple and RTD signal modules (SMS)........cccuiiiiiiiiiiiiee e 1473
SM 1231 ThEIMOCOUPIE. ...ceiie et e e e e e e e e e e e e e e et e e e e e e e e s nnnnees 1473
Basic operation for a thermoCOUPIEooiiiiiii e 1476
Selection tables for the SM 1231 thermocouple.............oiiiiiiiiiiicee e 1477
SM 1231 RTD ..eiiiii ittt et e e e et e e e st e e e e st aeeeesnbaeeessnsaeeesantaeeesanreeaenns | 1479
Selection tables for the SM 1231 RTD ...t 1482
TechnNOIOGY MOUUIEScoiiiiiie ettt e e snneee s 1485
SM 1278 4AXIO-LINK MaSster SM........c.oviiiiiiiii ettt e e sraee e 1485
SM 1278 4XIO-Link Master OVEIVIEWeeieiieiie e a e 1488
L070] o] =T 1] T PP PUPUPRPPPRRY 1491
Parameters/addreSs SPACEcoii ittt e 1493
Interrupt, error, and SYSteM @larms.........coovii i 1496
Digital signal boards (SBS)ueiiiiiiiiiiiiiiiiie e e e e ea e e e 1500
SB 1221 200 kHz digital input specificationsooo o) 1500
SB 1222 200 kHz digital output specifications............cccueiiiiii i) 1502
SB 1223 200 kHz digital input / output specifications.............ooooiiiiiii) 1505
SB 12232 X 24 V DC input /2 X 24 VV DC output specificationscooocceeiiiniiiinnd] 1508
Analog Signal boards (SBS)coiuuiiiiiiiiiieiiie e 1511
SB 1231 1 analog input specifications..............oooii e 1511
SB 1232 1 analog output Specifications.ccoiiriiiiii e 1514
Measurement ranges for analog inputs and OUIPULScoociiiiiiiie i 1516
Step response of the analog INPULSoo i 1516
Sample time and update times for the analog iNPULS ... 1516
Measurement ranges of the analog inputs for voltage and current (SB and SM)| 1516
Measurement ranges of the analog outputs for voltage and current (SB and SM)| 1517

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 23

Table of contents

24

A.14.4 Thermocouple signal boards (SBS)........c.ueiiiiiiiiiiiiiie e 1519
A.14.41 SB 1231 1 analog thermocouple input specificationsccccoi i 1519
A14.42 Basic operation for a thermoCoUPIEceeeiiiiiiee e 1520
A.14.5 RTD Signal boards (SBS) ...cceeiiiiiieiieie ettt e e e e e e e e e e e e e e e e e nnene s 1523
A.14.51 SB 1231 1 analog RTD input specifications ..o 1523
A.14.52 Selection tables for the SB 1231 RTDcoiiiiiiiiieie e e e 1526
A.15 BB 1297 Battery DOArd...........ooouiiiiiiiiii e 1528
A.16 Communication INTEIFACESooi i e e 1530
A.16.1 PROFIBUS ...ttt ettt e et e e e st e e e st e e e s sataeeesantaeeessntaeeesantaeaeaansaeaeanns 1530
A.16.1.1 CM 1242-5 PROFIBUS DP SLAVE ..ot 1530
A.16.1.2 Pinout of the D-sub socket of the CM 1242-5. e 1531
A.16.1.3 CM 1243-5 PROFIBUS DP MaSTEFcoiiieiiieieeeee et 1532
A.16.1.4 Pinout of the D-sub socket of the CM 1243-5... .. e 1533
A.16.2 (O ey B R RRTR 1534
A.16.2.1 CP 1242-7 GPRS ...ttt et e et e e ettt e e e sena et e e ssseeeeassaeeeannneans 1534
A.16.2.2 GSM/GPRS antenna ANT794-AMR.......coo it a e e 1536
A.16.2.3 Flat antenna ANT794-3Mo e e e e e e s e e e e e e e e e nnneeeeas 1537
A.16.3 CM 1243-2 AS-i MASTET ..o e e e e et e e e e e e eas 1538
A.16.3.1 Technical data for the AS-i master CM 1243-2..........ooiiii e 1538
A.16.3.2 Electrical connections of the AS-i Master ... 1539
A.16.4 RS232, RS422, and RSA8S ...ttt e e 1541
A.16.4.1 CB 1241 RS485 SPecCifiCationsueeiiiiie et 1541
A.16.4.2 CM 1241 RS232 SPeCIfiCationNS ...t e e e e 1543
A.16.4.3 CM 1241 RS422/485 SPECIfiCAtIONSeeeeieeeieiiiiii et e e e e e 1544
A7 TeleService (TS Adapter and TS Adapter modular) ..., 1546
A.18 SIMATIC MEMOIY CAPUS ..ottt a bt e e e snb e e e e nbee e e e eneeas 1546
A.19 T 018 18R] T a1 =1 o] = 1547
A.20 S7-1200 Potentiometer MOAUIEoeeiiiiee e 1549
A.21 FL@ I =Y q o T=T g 1= (o] o I o= o) =SS 1550
A.22 (70T 10T =10 T10] 0 I o] e Yo L[£ OSSR 1551
A.22.1 PM 1207 POWEN MOAUIEcoeiiiiiee et e e e e e e e e e e e e e enneeeeas 1551
A.22.2 CSM 1277 compact sWitch ModUle.............ooiiiiiiiiiie e 1551
A.22.3 1031/ I 07N\ To] o7 =1 o I 4o Yo 11] 1O 1552
A.22.4 RF120C communications MOAUIE...........oooueiiiiiiie et 1552
A.22.5 SM 1238 Energy meter MOAUIEcooiiiiiiiiii e 1553
A.22.6 SIWAREX electronic weighing SYStemSooiiiiiiiiii e 1553
Calculating @ pOWEr DUAQGEL...........o e e e e s e e e e e e e e e en] 1555
0] 0o [=1 41 To [[l 1oy 4 T= i To] o (PP PPPPPPPPPPPPPPPRN | 1559
C1 L0 Uy s o T 1U] =SS 1559
C2 Signal modules (SMs), signal boards (SBs), and battery boards (BBS)..........ccccocvveeennnee 1560
C.3 (O] 0 010 0 18T o (o1 (o] o 1SS 1561
C4 Fail-Safe CPUs and signal MOAUIESccooiiiiiiiiiiii e 1563
C.5 (01 1= T ol g To Yo 18] L PRSP 1563
C.6 Y T=T g L] YA o= [[PSP PP PUPPPRPPPPPN 1563

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Table of contents

c7 BaSIC HMI EVICEScooiiiiiiiiiieiie ettt e e 1564
C.8 Spare parts and other hardwareo 1564
C.9 Programming SOftWaAIEcooiiiiiee e 1569
D Device exchange and spare parts compatibilityccccoiiiiiiiiiiiiii 1571
D.1 Exchanging @ V3.0 CPU for @ V4.2 CPU..........oiiiiiiii e 1571
D.2 S7-1200 V3.0 and earlier terminal block spare Kitsccooiiiiiiiiiiei e 1578
170 = 1581

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK 25

Table of contents

26

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Product overview 1

1.1

Introducing the S7-1200 PLC

The S7-1200 controller provides the flexibility and power to control a wide variety of devices
in support of your automation needs. The compact design, flexible configuration, and
powerful instruction set combine to make the S7-1200 a perfect solution for controlling a
wide variety of applications.

The CPU combines a microprocessor, an integrated power supply, input and output circuits,
built-in PROFINET, high-speed motion control I/O, and on-board analog inputs in a compact
housing to create a powerful controller. After you download your program, the CPU contains
the logic required to monitor and control the devices in your application. The CPU monitors
the inputs and changes the outputs according to the logic of your user program, which can
include Boolean logic, counting, timing, complex math operations, motion control, and
communications with other intelligent devices.

The CPU provides a PROFINET port for communication over a PROFINET network.
Additional modules are available for communicating over PROFIBUS, GPRS, RS485,
RS232, RS422, IEC, DNP3, and WDC (Wideband Data Communication) networks.

@ Power connector

® Memory card slot under top
door

® Removable user wiring con-
nectors (behind the doors)
@ Status LEDs for the on-
board I/0

®

PROFINET connector (on
the bottom of the CPU)

®

Several security features help protect access to both the CPU and the control program:

e Every CPU provides password protection (Page|210) that allows you to configure access
to the CPU functions.

® You can use|"know-how protection” (Page|213) to hide the code within a specific block.

® You can use copy protection (Page|214) to bind your program to a specific memory card
or CPU.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 27

Product overview

1.1 Introducing the S7-1200 PLC

Table 1-1 Comparing the CPU models
Feature CPU 1211C CPU 1212C CPU 1214C CPU 1215C CPU 1217C
Physical size (mm) 90 x 100 x 75 110x 100x 75 |130x 100x 75 |150x 100 x 75
User memory Work 50 Kbytes 75 Kbytes 100 Kbytes 125 Kbytes 150 Kbytes
Load 1 Mbyte 2 Mbytes 4 Mbytes
Retentive 10 Kbytes
Local on-board 1/0 | Digital 6 inputs/ 8 inputs/ 14 inputs/
4 outputs 6 outputs 10 output
Analog 2 inputs 2 inputs/2 output
Process image size | Inputs (I) 1024 bytes
Outputs (Q) | 1024 bytes
Bit memory (M) 4096 bytes 8192 bytes
Signal module (SM) expansion None 2 8
Signal board (SB), Battery board | 1
(BB), or communication board
(CB)
Communication module (CM) 3
(left-side expansion)
High-speed coun- | Total Up to 6 configured to use any built-in or SB inputs
ters 1 MHz - | Ib.2to 1b.5
100/180 la.0 to la.5
kHz
30/'20 kHz | -- la.6tola.7 la.6tolb.5 | la.6 to Ib.1
200 kHz?3
Pulse outputs? Total Up to 4 configured to use any built-in or SB outputs
1 MHz - Qa.0 to Qa.3
100 kHz Qa.0 to Qa.3 Qa.4 to Qb.1
20kHz |- |Qa4toQas [Qa4toqp.1 -
Memory card SIMATIC memory card (optional)
Data logs Number Maximum 8 open at one time
Size 500 MB per data log or as limited by maximum available load memory

Real time clock retention time

20 days, typ./12 day min. at 40 degrees C (maintenance-free Super Capacitor)

PROFINET
Ethernet communication port

1

2

Real math execution speed

2.3 pslinstruction

Boolean execution speed

0.08 ps/instruction

1 The slower speed is applicable when the HSC is configured for quadrature mode of operation.

2 For CPU models with relay outputs, you must install a digital signal (SB) to use the pulse outputs.
3 Up to 200 kHz are available with the SB 1221 DI x 24 V DC 200 kHz and SB 1221 DI 4 x 5V DC 200 kHz.

The different CPU models provide a diversity of features and capabilities that help you create
effective solutions for your varied applications. For detailed information about a specific
CPU, see the technical specifications (Page 1359).

28

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Product overview

1.1 Introducing the S7-1200 PLC

Table 1- 2 Blocks, timers, and counters supported by S7-1200
Element Description
Blocks Type OB, FB, FC, DB
Size | CPU Model CPU 1211C | CPU 1212C | CPU 1214C | CPU 1215C | CPU 1217C
Code blocks 50KB 64KB 64KB 64KB 64KB
Linked' data blocks 50KB 75KB 100KB 125KB 150KB
Unlinked? data blocks | 256KB 256KB 256KB 256KB 256KB
Quantity Up to 1024 blocks total (OBs + FBs + FCs + DBs)
Nesting depth 16 from the program cycle or startup OB;
6 from any interrupt event OB
Monitoring Status of 2 code blocks can be monitored simultaneously
OBs Program cycle Multiple
Startup Multiple
Time-delay interrupts 4 (1 per event)
Cyclic interrupts 4 (1 per event)
Hardware interrupts 50 (1 per event)
Time error interrupts 1
Diagnostic error interrupts 1
Pull or plug of modules 1
Rack or station failure 1
Time of day Multiple
Status 1
Update 1
Profile 1
Timers Type IEC
Quantity Limited only by memory size
Storage Structure in DB, 16 bytes per timer
Counters Type IEC
Quantity Limited only by memory size
Storage Structure in DB, size dependent upon count type
e Sint, USInt: 3 bytes
e Int, UInt: 6 bytes
e Dint, UDInt: 12 bytes

1 Stored in work memory and load memory

2 Stored only in load memory

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

29

Product overview

1.2 Expansion capability of the CPU

1.2 Expansion capability of the CPU

The S7-1200 family provides a variety of modules and plug-in boards for expanding the
capabilities of the CPU with additional 1/0 or other communication protocols. For detailed
information about a specific module, see the|technical specifications|(Page|1359).

©) Communication module (CM) or communication processor (CP) (Page 1530)

@) CPU (CPU 1211C|(Page 1370), CPU 1212C|(Page|1382), CPU 1214C (Page 1395),
CPU 1215C (Page|1409),/CPU 1217C/|(Page 1425))

® Signal board (SB) [digital SB|(Page 1500), analog SB/(Page 1511)), communication board

(CB)|(Page 1541), or Battery Board (BB) CPU (CPU 1211C, CPU 1212C, CPU 1214C, CPU
1215C, CPU 1217C) (Page|1528)

® Signal module (SM) (digital SM|(Page| 1442),/analog SM|(Page| 1459), thermocouple SM
(Page 1473), RTD SM (Page|1479), technology SM) (Page|1485)

S7-1200 Programmable controller
30 System Manual, V4.2, 09/2016, A5SE02486680-AK

Product overview

Table 1-3 S7-1200 expansion modules

1.2 Expansion capability of the CPU

Type of module

Description

The CPU supports one plug-in expansion
board:

e A signal board (SB) provides additional
1/0O for your CPU. The SB connects on
the front of the CPU.

¢ A communication board (CB) allows
you to add another communication port
to your CPU.

e A battery board (BB) allows you to
provide long term backup of the
realtime clock.

@ Status LEDs on the SB

@ Removable user wiring connector

Signal modules (SMs) add additional func-
tionality to the CPU. SMs connect to the
right side of the CPU.

¢ Digital I/O

e Analog I/O

e RTD and thermocouple
e SM 1278 IO-Link Master

e SM 1238 Energy Meter
(https://support.industry.siemens.com/
cs/ww/en/view/109483435)

@ Status LEDs

@ Bus connector slide tab

(® Removable user wiring connector

Communication modules (CMs) and
communications processors (CPs) add
communication options to the CPU, such
as for PROFIBUS or RS232/RS485 con-
nectivity (for PtP, Modbus or USS), or the
AS-i master.

A CP provides capabilities for other types
of communication, such as connecting to
the CPU over a GPRS, LTE, IEC, DNP3,
or WDC network.

e The CPU supports up to three CMs or
CPs

e Each CM or CP connects to the left
side of the CPU (or to the left side of
another CM or CP)

@ Status LEDs

@ Communication connector

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

31

https://support.industry.siemens.com/cs/ww/en/view/109483435
https://support.industry.siemens.com/cs/ww/en/view/109483435

Product overview

1.3 Basic HMI panels

1.3

32

Basic HMI panels

The SIMATIC HMI Basic Panels provide touch-screen devices for basic operator control and
monitoring tasks. All panels have a protection rating for IP65 and have CE, UL, cULus, and
NEMA 4x certification.

The available Basic HMI panels |(Page|1564)are described below:

KTP400 Basic: 4" Touch screen with 4 configurable keys, a resolution of 480 x 272 and
800 tags

KTP700 Basic: 7" Touch screen with 8 configurable keys, a resolution of 800 x 480 and
800 tags

KTP700 Basic DP: 7" Touch screen with 8 configurable keys, a resolution of 800 x 480
and 800 tags

KTP900 Basic: 9" Touch screen with 8 configurable keys, a resolution of 800 x 480 and
800 tags

KTP1200 Basic: 12" Touch screen with 10 configurable keys, a resolution of 800 x 480
and 800 tags

KTP 1200 Basic DP: 12" Touch screen with 10 configurable keys, a resolution of 800 x
400 and 800 tags

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

New features 2

The following features are new in the V4.2 release:
® Enhancements to the Web server (Page|1001):
— More shared functionality with the S7-1500 Web server
— Ability to define user-defined Web page as start page
— New or improved standard Web pages:
Watch tables (Page 1033)
Online backup|(Page 1035)
Communication|(Page|1027): inclusion of communication statistics
® New programming instructions:
— Basic instructions:
LOWER_BOUND: (Read out ARRAY low limit) |(Page 277)
UPPER_BOUND: (Read out ARRAY high limit) (Page|279)
— Extended instructions
GetSymbolName (Read out a tag on the input parameter) (Page|370)

GetSymbolPath (Query composite global name of the input parameter assignment)
(Page 373)

GetlnstanceName (Read out name of the block instance) (Page 376)
GetlnstancePath (Query composite global name of the block instance) |(Page|379)
GetBlockName (Read out name of the block) (Page|381)

GETIO (Read process image) (Page 388)

SETIO (Transfer process image) (Page 389)

GETIO_PART (Read process image area) (Page|390)

SETIO_PART (Transfer process image area) (Page 392)
D_ACT_DP (Enable/disable PROFINET IO devices) (Page 398)
RCVREC (I-device/l-slave receive data record)|(Page 411)

PRVREC (l-device/l-slave make data record available) (Page 413)
PROFlenergy (Page|419) instructions for energy management
Gen_UsrMsg (Generate user diagnostic alarms) (Page|436)
RD_SINFO (Read current OB start information) (Page 440)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

New features

34

Get_Name (Read the name of a PROFINET IO device) (Page 453)

GetStationInfo (Read the IP or MAC address of a PROFINET IO device)|(Page 460)
CTRL_PTO (Pulse train output) (Page 488)

DataLogClear (Empty data log) (Page/518)

DataLogDelete (Delete data log)|(Page|520)

CREATE_DB (Create data block) (Page|534)

ATTR_DB (Read data block attribute) (Page 541)

DELETE_DB (Delete data block)/(Page|542)

New communication capabilities:

Time synchronization|(Page 181)

Media Redundancy Protocol (MRP) |(Page 954) (client-only)
S7-routing|(Page 962)

Autonegotiation|(Page|814)

PROFINET interface X1 port pinouts|(Page|1369)

New High-Speed Counter (HSC) capabilities:

Added support to the CTRL_HSC_EXT (Control high-speed counter) instruction for
Count and Frequency mode|(Page|556)

Enable and disable the HSC with the Gate input/(Page 567)

Capture the HSC’s count value with Capture input (Page 569)

Generate an output pulse on HSC events with the Compare output (Page 570)
Ability to change HSC counting limits and an additional reference value (Page|578)

Improved accuracy of frequency measurement|(Page 573)

New motion control capabilities:

Speed controlled operation (Page 681)

Telegram 4 support|(Page 684)

Simulation axis |(Page|689)

Data adaptation (Page|691)

Axis control using the TM Pulse module (Page 702)
Homing reference point switch level (Page|726)

Hardware limit switch edge detection configuration on address change|(Page|716)

Backup and restore of an online S7-1200 CPU from STEP 7 (Page|1352)

Enhancements to capturing and loading an|online DB snapshot|(Page 1327)

Opportunity to|synchronize the online CPU with the offline project|/(Page 219) under
certain conditions

Reduction of repeated security event entries in the|Diagnostics Buffer (Page 114)
Ability to/ format a SIMATIC memory card from STEP 7 /(Page 1320)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

New features

® Ability to prevent copies from internal load memory to external load memory (SIMATIC
memory card)|(Page|212)

e Support for the|3964R protocol|(Page 1092) in point-to-point communications

e Ability to declare a tag in | or Q memory using a PLC data type (Page 133) (user-defined
data type or UDT)

e Ability to save trace job measurements|/(Page 1347) to external load memory

¢ Maximum size of 256KB for unlinked (load memory) data blocks, regardless of CPU
model|(Page 27)

New modules for the S7-1200

New modules expand the power of the S7-1200 CPU and provide the flexibility to meet your
automation needs:

® New Fail-safe CPUs (https://support.industry.siemens.com/cs/ww/en/view/104547552):
There are two new fail-safe CPUs in conjunction with the S7-1200 V4.2 or later release:

- CPU 1212FC DC/DC/DC (6ES7212-1AF40-0XB0)
- CPU 1212FC DC/DC/RIly (6ES7212-1HF40-0XB0)

® The SM 1238 Energy Meter 480 V AC (6ES7238-5XA32-0XB0)
(https://support.industry.siemens.com/cs/ww/en/view/109483435) supports machine-level
deployment with an S7-1200 CPU V4.1 or later, including the Fail-safe CPUs. It records
over 200 different electrical measurement and energy values and lets you create
transparency about the energy requirements of individual components of a production
plant down to the machine level. Using the measured values provided by the SM 1238
Energy meter module, you can determine energy consumption and power demand.

Exchanging your V3.0 CPU for a V4.2 CPU

If you are replacing an S7-1200 V3.0 CPU with an S7-1200 V4.2 CPU, take note of the
documented|differences (Page 1571) in the versions and the required user actions.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 35

https://support.industry.siemens.com/cs/ww/en/view/104547552
https://support.industry.siemens.com/cs/ww/en/view/109483435

New features

36

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

STEP 7 programming software 3

STEP 7 provides a user-friendly environment to develop, edit, and monitor the logic needed
to control your application, including the tools for managing and configuring all of the devices
in your project, such as controllers and HMI devices. To help you find the information you
need, STEP 7 provides an extensive online help system.

STEP 7 provides standard programming languages for convenience and efficiency in
developing the control program for your application.

® LAD (ladder logic) (Page|199) is a graphical programming language. The representation
is based on circuit diagrams.

e FBD (Function Block Diagram) (Page|200) is a programming language that is based on
the graphical logic symbols used in Boolean algebra.

® SCL (structured control language)|(Page 201) is a text-based, high-level programming
language.

When you create a code block, you select the programming language to be used by that
block. Your user program can utilize code blocks created in any or all of the programming
languages.

Note

STEP 7 is the programming and configuration software component of the TIA Portal. The
TIA Portal, in addition to STEP 7, also includes WinCC for designing and executing runtime
process visualization, and includes online help for WinCC as well as STEP 7.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 37

STEP 7 programming software

3.1 System requirements

3.1

38

System requirements

You must install STEP 7 with Administrator privileges.

Table 3-1 System requirements

Hardware/software Requirements
Processor type Intel® Core™ i5-3320M 3.3 GHz or better
RAM 8 GB

Available hard disk space

2 GB on system drive C:\

Operating systems

You can use STEP 7 with the following operating systems (64-
bit only):

e Microsoft Windows 7 Home Premium SP1 or higher (STEP 7
Basic only, not supported for STEP 7 Professional)

e Microsoft Windows 7 or higher (Professional SP1, Enterprise
SP1, Ultimate SP1)

e Microsoft Windows 8.1 (STEP 7 Basic only, not supported
for STEP 7 Professional)

e Microsoft Windows 8.1 (Professional, Enterprise)

e Microsoft Server 2008 R2 StdE SP1 (STEP 7 Professional
only)

e Microsoft Server 2012 R2 StdE

Graphics card

32 MB RAM
24-bit color depth

Screen resolution

1920 x 1080 (recommended)

Network 10 Mbit/s Ethernet or faster, for communication between STEP 7
and the CPU
Optical drive DVD-ROM

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

STEP 7 programming software

3.2 Different views to make the work easier

3.2 Different views to make the work easier

STEP 7 provides a user-friendly environment to develop controller logic, configure HMI
visualization, and setup network communication. To help increase your productivity, STEP 7
provides two different views of the project: a task-oriented set of portals that are organized
on the functionality of the tools (Portal view), or a project-oriented view of the elements within
the project (Project view). Choose which view helps you work most efficiently. With a single
click, you can toggle between the Portal view and the Project view.

= infsmion

[,

| @ \& I\ ;
- T L= w

Portal view

@ Portals for the different tasks
(@ Tasks for the selected portal

® Selection panel for the selected
action

@ Changes to the Project view

Project view

@ Menus and toolbar

® Project navigator

® Work area

@ Task cards

® Inspector window

® Changes to the Portal view
@ Editor bar

With all of these components in one place, you have easy access to every aspect of your

project. The work area consists of three tabbed views:

e Device view: Displays the device that you have added or selected and its associated

modules

® Network view: Displays the CPUs and network connections in your network

® Topology view: Displays the PROFINET topology of the network including devices,
passive components, ports, interconnections, and port diagnostics

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

39

STEP 7 programming software

3.2 Different views to make the work easier

40

Each view also enables you to perform configuration tasks. The inspector window shows the
properties and information for the object that you have selected in the work area. As you
select different objects, the inspector window displays the properties that you can configure.
The inspector window includes tabs that allow you to see diagnostic information and other
messages.

By showing all of the editors that are open, the editor bar helps you work more quickly and
efficiently. To toggle between the open editors, simply click the different editor. You can also
arrange two editors to appear together, arranged either vertically or horizontally. This feature
allows you to drag and drop between editors.

The STEP 7 Information System provides extensive online help for all of the configuration,
programming, and monitoring tools of STEP 7. You can refer to it for detailed explanations
beyond what this manual provides.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

STEP 7 programming software

3.3 Easy-to-use fools

3.3 Easy-to-use tools

3.3.1 Inserting instructions into your user program

STEP 7 provides task cards that contain the instructions for your v | Basic instructions
program. The instructions are grouped according to function. Name

] General
5

To create your program, you drag instructions from the task card
onto a network.

L]

b i Bitlogic operations

¥ (&) Timer operations

b [41] Counter operations

b [€] Comparator operations
¥ || Math functions

b =& Move operations

¥ =g Conversion operations
b 3 Program control operations
¥ i Word logic operations
¥ i Shift and rotate

3.3.2 Accessing instructions from the "Favorites" toolbar

STEP 7 provides a "Favorites" toolbar to give you quick access to the instructions that you
frequently use. Simply click the icon for the instruction to insert it into your network!
a5 A=EE:EHE 0w (For the "Favorites" in the instruction tree, double-
- — - click the icon.)

Ak ik == {7} = =T [:k

o [You can easily customize the v [Favorites
] 673 = Favo_rltes by adding new in- £ S =
structions.
%E Simply drag and drop an instruc- "
H n H n L

ViBasIc instructions tion to the "Favorites”. ~ Basic instructions

Name [The instruction is now just a click name C

L | Gener..al . | aWay! r 3 G.eneml : -

¥ [Bitlogic operations ¥ | Bitlogic operations

w | @] Timer operations » @] Timer operatons
& TP [= F ¢
& TOM [& TON ¢
4 TOF [& TOF ¢
SO 8 & 10Nk '
)| (TP~ 4)| TP -
o)] =(TOM)- E: H) —{ToN)- £
)| =(TOF}= . H) ={TOF)= 4
)] ={TCMR)~ T) ={TONR)- 1
A} -{rT)- F) ~{RT)- F
] -tFm- L)] (- 1

¥ [4+1] Counter operstions ¥ l41] Counter operations

* "g_ Comparator operations | ¢ (€] Comparator operstions -

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 41

STEP 7 programming software

3.3 Easy-to-use tools

3.3.3

Creating a complex equation with a simple instruction

The Calculate instruction |(Page|255) lets you create a math function that operates on multi-
ple input parameters to produce the result, according to the equation that you define.

In the Basic instruction tree, expand the Math functions folder.

b [] General
» [ii] Bit logic operations Double-click the Calculate instruction to insert the instruction
b [i] Timer operations into your user program.
b [41] Counter operations
L3 p
4 E Cormparatar operations
- ri‘ Math functions
| CALCULATE
£1 Aoo i
oo (g The uncqnflgured_CaIcuIate instruc-
"t = tion provides two input parameters
i and an output parameter.
ouT =
1 ourt
INzZ #*
anE g Click the "?7?7?" gnd select the data types for the input and output pa-
» i - rameters. (The input and output parameters must all be the same data
— 5 MO =
oun glm type)
r heal ol Forthis example, select the "Real" data type.
IN2 5& jiﬂ[ﬂ
Sint
ubim
Eyie
Word
Chiard
Click the "Edit equation” icon to enter the equation.
"Edit "Calculate” instruction
OouT = [IEEEs
Example:
(INT & IN2Y * (INT = IN2)

42

Possible instructions for Real:
+,= ", [, Abs, Meg, Exp, ™", Frac, Ln, Sin, ASin, Cos, ACos, Tan, ATan, Sqr, Sqrt, Round, Ceil, Floor, Trunc

cancel |

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

STEP 7 programming software

3.3 Easy-to-use fools

For this example, enter the following equation for scaling a raw analog value. (The "In" and
"Out" designations correspond to the parameters of the Calculate instruction.)

Out vae = ((Out high - Out Iow) / (In high = In Iow)) * (In value = IN Iow) + Out 1ow

Out = ((in4 - in5) / (in2 - in3)) * (in1 - in3) + in5

Where: Out value (Out) Scaled output value
In value (in1) Analog input value
In high (in2) Upper limit for the scaled input value
IN tow (in3) Lower limit for the scaled input value
Out high (in4) Upper limit for the scaled output value
Out 1ow (in5) Lower limit for the scaled output value

In the "Edit Calculate" box, enter the equation with the parameter names:
OUT = ((in4 - in5) / (in2 - in3)) * (in1 - in3) +in5

Edit "Calculate™ instruction p.e
OUT = | (ind-in5) / Gn2-in3)} * (Rl -in3} +In5
Example

(T & IM2)* (T =12
Possible instructions for Real
+.= " [Abs, Neg, Exp. **. Frac. Ln. 3in, ASin. Cos. ACos. Tan, ATan, Sqr. Sqrt. Round, Ceil, Floor. Trunc

Ok 1 Cancel |

When you click "OK", the Calculate oucuE (g
instruction creates the inputs re- Real —

. . . f—————— [N EMO
quired for the instruction.

OUT = {ind-inSNGn2-in3). .

M1 OUT = <7
2

NS

14

INS 3F

Enter the tag names for the values s (]

that correspond to the parameters. Real
————————N ENO

OUT = (imd = in5}/ (in2=i..

) L tell 02 2
“In_value” = [M1 OUT = "0ur_value”

%hi0l 30
“In_high” — IN2

%MD 4
“In_low" = N3

LMD 33
“Dt_high™ — |4

%042
“Out_low” — M5 &

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 43

STEP 7 programming software

3.3 Easy-to-use tools

3.34 Adding inputs or outputs to a LAD or FBD instruction

INZsE Some of the instructions allow you to create additional inputs or outputs.

e To add an input or output, click the "Create" icon or right-click on an input stub for one of
the existing IN or OUT parameters and select the "Insert input" command.

e To remove an input or output, right-click on the stub for one of the existing IN or OUT
parameters (when there are more than the original two inputs) and select the "Delete"
command.

3.3.5 Expandable instructions

Some of the more complex instructions are expandable, displaying only the key inputs and
outputs. To display all the inputs and outputs, click the arrow at the bottom of the instruction.

Y0B3 "FID_3Step_To"
" — o= Pre—
FID_3Step_1 FID_35tep = !#!
FID_35tep
Y —En END —
Setpoint
=—|El ENG — P
_ Input
Setpoint Input_PER
Input — Artuator_H Cutput_UP =~
Input_FER = Actuator_L Qutput_DM =
— Actuator_H utput P Feedback Output_PER
—Actuatar L Qutput DN Feedback_PER .
Output_FER :]
Feedback HpLT bl H
Feedback_FER —_
— —
- — —{Feset —
= State =
- Errar = State
= ErrarBits ELEa—
— - ErrarBits

S7-1200 Programmable controller
44 System Manual, V4.2, 09/2016, ASE02486680-AK

STEP 7 programming software
3.3 Easy-to-use fools

3.3.6 Selecting a version for an instruction

The development and release cycles for certain sets of instructions (such as Modbus, PID
and motion) have created multiple released versions for these instructions. To help ensure
compatibility and migration with older projects, STEP 7 allows you to choose which version
of instruction to insert into your user program.

Click the icon on the instruction tree task card
to enable the headers and columns of the
= instruction tree.

Options

To change the version of the instruction, se-

| | Open user communication

e FaI dula i ELreinet g | X lect the appropriate version from the drop-
& TRCV_C Receive data wis Ethernet (T. m i
& VAL C Send e-mail i down list.
w [Others
& TCON Establish cammunication c_. V4.0
4 TDISCON Terminate communication ... V2.1
4 TSEND Send data vis communicati.. V4.0
& ROV Receive data via communic.. V4.0

3.3.7 Modifying the appearance and configuration of STEP 7

You can select a variety of settings, such as the appearance of the interface, language, or
the folder for saving your work.

Select the "Settings" command from the "Options" menu to change these settings.

Sattings

b General -
General [
» Hardware configuraten -
b PLC programming General settings
¥ Simulation
b Online & diagnostcs Username: |plosim
PLC alarms

Userinterfoce language: | English =
» Vigualimtion = F
Keyboard shomeuts Mnemanic: | international |=
Shiw listof recently used =

projects: |3 |5 elements

[TLead most recent prajeet during starup

Toaktips: [wf Show trunca ted texts completely

mshowmldps {contesrsensitive help i
available}

Eopell cascade avtarmaticallyin toaltips

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 45

STEP 7 programming software

3.3 Easy-to-use fools

3.3.8

46

Dragging and dropping between editors

awus 1O help you perform tasks quickly and easily,

= STEP 7 allows you to drag and drop elements
from one editor to another. For example, you
can drag an input from the CPU to the address
of an instruction in your user program.

You must zoom in at least 200% to select the
inputs or outputs of the CPU.

Tesaiaain senees Notice that the tag names are displayed not
only in the PLC tag table, but also are dis-
played on the CPU.

g -‘:qZ.«;xmm

{ —
To display two editors at one time, use the Help = n
"Split editor" menu commands or buttons in s}”_“_’“ } Curl+ShiftF4
Imarn e &
the toolbar. | Mext editor coleFe |
Frevious editer Ctrl+Shift+ Fé

,J_, Splivedivor spaceverticaly
IRl 5plit editor space horzontally ShifteF3

To toggle between the editors that have been opened, click the icons in the editor bar.

(e T T T EXT—

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5SE02486680-AK

STEP 7 programming software
3.3 Easy-to-use fools

3.3.9 Changing the operating mode of the CPU
The CPU does not have a physical switch for changing the operating mode (STOP or RUN).

Use the "Start CPU" and "Stop CPU" toolbar buttons to change the operating

mode of the CPU. mm®

When you configure the CPU in the device configuration (Page|153), you configure the|start-
up behavior in the properties of the CPU (Page|170).

The "Online and diagnostics" portal also provides an operator panel for changing the
operating mode of the online CPU. To use the CPU operator panel, you must be connected
online to the CPU. The "Online tools" task card displays an operator panel that shows the
operating mode of the online CPU. The operator panel also allows you to change the
operating mode of the online CPU.

 CPU operator panel Use the button on the operator panel to change the operating mode
PLE.T (2P0 12146 DODCDE) (STOP or RUN). The operator panel also provides an MRES button for
m wsor CUENCC regetting the memory.
ERROR STOP
MAINT . MKE‘S

The color of the RUN/STOP indicator shows the current operating mode of the CPU. Yellow
indicates STOP mode, and green indicates RUN mode.

From the device configuration in STEP 7/(Page|153) you can also configure the default
operating mode on power up of the CPU (Page|87).

Note

You can also change the operating mode of the CPU from the Web server/(Page|1001) or
the SIMATIC Automation Tool
(https://support.industry.siemens.com/cs/ww/en/view/98161300).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 47

https://support.industry.siemens.com/cs/ww/en/view/98161300

STEP 7 programming software

3.3 Easy-to-use tools

3.3.10 Changing the call type for a DB

HIEC_Timer_0_ STEP 7 allows you to easily create or change the associ-

Inztance

—— _— ation of a DB for an instruction or an FB that is in an FB.
S i | e You can switch the association between different DBs.

: e You can switch the association between a single-
- ik sl instance DB and a multi-instance DB.

N P ; ¢ You can create an instance DB (if an instance DB is

X Dalete i missing or not available).
G0t] " " H
b2 N You. can access the_ Change call typg command elther
Change ool roe by right-clicking the instruction or FB in the program edi-
i H " n
e [— e A tor or by selecting the "Block call" command from the
[Insert empty box Shil+Fs "OptionS" menu.
'.'-3} Ir|>rr'-[:n;"men'l .
The "Call options” dialog allows
Data block you to select a single-instance
HB Name [EC_Timer 0 DB [or multi-instance DB. You can
Number also select specific DBs from a
Single IEC_Timer_0_DB_1 R i A
instance Manu drop-down list of available DBs.
The called function block saves its data in its own instance
Hﬂ dats block
Ml
mstance

More_

| F—m—

S7-1200 Programmable controller
48 System Manual, V4.2, 09/2016, ASE02486680-AK

STEP 7 programming software
3.3 Easy-to-use fools

3.3.11 Temporarily disconnecting devices from a network

From the network view, you can disconnect individual network devices from the subnet.
Because the configuration of the device is not removed from the project, you can easily
restore the connection to the device.

PLE_1 10-Device_1 10-Device_2
CPU 1214C IM 1571-3PN 1M 151-3PN

PLC 1 (x|

PNAE_2

Right-click the interface port of the network
device and select the "Disconnect from sub-
net" command from the context menu.

10-Dévice_2
1M 151-3PN

Assign to new subnet
Disconnect from subnet

Assign to new |0 controller
Disconnect from 10 system
(7] Highlight 10 system

g Properties

STEP 7 reconfigures the network connections, but does not remove the disconnected device
from the project. While the network connection is deleted, the interface addresses are not

changed.
PLCT I0-Device_1 10-Device_2
CFU1214C IM 157-3FN 1M 151-3FN
PLC Nor assigned
PRAE_2

When you download the new network connections, the CPU must be set to STOP mode.

To reconnect the device, simply create a new network connection to the port of the device.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 49

STEP 7 programming software

3.3 Easy-to-use fools

3.3.12

50

Virtual unplugging of devices from the configuration

|§' Topology view IiNemnpkview Im Device view |_

& (FLCT

[] &l & |G | =
|
Modules not plugged in =

|& Topology view [& Networkview [[f Device view |

Muodules not

plugged in

[P I=)] & [@]d e =

(=]

STEP 7 provides a storage area for "un-
plugged" modules. You can drag a module
from the rack to save the configuration of
that module. These unplugged modules
are saved with your project, allowing you
to reinsert the module in the future without
having to reconfigure the parameters.

One use of this feature is for temporary
maintenance. Consider a scenario where
you might be waiting for a replacement
module and plan to temporarily use a dif-
ferent module as a short-term replace-
ment. You could drag the configured
module from the rack to the "Unplugged
modules" and then insert the temporary
module.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5SE02486680-AK

STEP 7 programming software
3.4 Backward compatibility

3.4 Backward compatibility

STEP 7 V14 supports configuration and programming of the S7-1200 V4.2 CPU and
provides for all of the new features|(Page|33).

You can download projects for S7-1200 V4.0 and V4.1 CPUs from STEP 7 (V12 or later) to
an S7-1200 V4.2 CPU. Your configuration and program will be limited to the set of features
and instructions that the previous version of the S7-1200 CPU and your version of STEP 7
supported.

This backwards compatibility makes it possible for you to run programs on the new
S7-1200 V4.2 CPU models that you have previously designed and programmed for older
versions.

A WARNING

Risks with copying and pasting program logic from older versions of STEP 7

Copying program logic from an older version of STEP 7 such as STEP 7 V12 into STEP 7
V14 can cause unpredictable behavior in program execution or failures to compile. Different
versions of STEP 7 implement program elements differently. The compiler does not always
detect the differences if you made the changes by pasting from an older version into

STEP 7 V14. Executing unpredictable program logic could result in death or severe
personal injury if you do not correct the program.

When using program logic from a release of STEP 7 earlier than STEP 7 V14, always
upgrade the entire project to STEP 7 14. Then you can copy, cut, paste, and edit program
logic as necessary. In STEP 7 V14, you can open a project from STEP 7 V13 SP1 or later.
STEP 7 then performs the necessary compatibility conversions and upgrades the program
correctly. Such upgrade conversions and corrections are necessary for proper program
compilation and execution. If your project is older than STEP 7 V13 SP1, you must upgrade
the project incrementally to STEP 7 V14 (Page 1571).

You cannot download projects for V1.0, V2.0, or V3.0 S7-1200 CPUs to an S7-1200 V4.2
CPU. See the Device exchange and spare parts compatibility (Page 1571) topic for
guidelines on upgrading older projects to a project that you can download.

Note
Projects with S7-1200 V1.x CPU versions

You cannot open a STEP 7 project that contains S7-1200 V1.x CPUs in STEP 7 V14. In
order to use your existing project, you must use STEP 7 V13 SP1 (with any update) to open
your project and convert the S7-1200 V1.x CPUs to V2.0 or later. You can then use STEP 7
V14 to open the saved project with the converted CPUs.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 51

STEP 7 programming software

3.4 Backward compatibility

52

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation 4

4.1 Guidelines for installing S7-1200 devices

The S7-1200 equipment is designed to be easy to install. You can install an S7-1200 either
on a panel or on a standard rail, and you can orient the S7-1200 either horizontally or
vertically. The small size of the S7-1200 allows you to make efficient use of space.

Electrical equipment standards classify the SIMATIC S7-1200 system as Open Equipment.
You must install the S7-1200 in a housing, cabinet, or electric control room. You should limit
entry to the housing, cabinet, or electric control room to authorized personnel.

The installation should provide a dry environment for the S7-1200. SELV/PELV circuits are
considered to provide protection against electric shock in dry locations.

The installation should provide the appropriate mechanical strength, flammability protection,
and stability protection that is approved for open equipment in your particular location
category according to applicable electrical and building codes.

Conductive contamination due to dust, moisture, and airborne pollution can cause
operational and electrical faults in the PLC.

If you locate the PLC in an area where conductive contamination may be present, the PLC
must be protected by an enclosure with appropriate protection rating. IP54 is one rating that
is generally used for electronic equipment enclosures in dirty environments and may be
appropriate for your application.

A wArRNING

Improper installation of the S7-1200 can result in electrical faults or unexpected operation
of machinery.

Electrical faults or unexpected machine operation can result in death, severe personal
injury, and/or property damage.

All instructions for installation and maintenance of a proper operating environment must be
followed to ensure the equipment operates safely.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 53

Installation

4.1 Guidelines for installing S7-1200 devices

Separate the S7-1200 devices from heat, high voltage, and electrical noise

As a general rule for laying out the devices of your system, always separate the devices that
generate high voltage and high electrical noise from the low-voltage, logic-type devices such
as the S7-1200.

When configuring the layout of the S7-1200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Reducing
the exposure to a high-temperature environment will extend the operating life of any
electronic device.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low-voltage
signal wires and communications cables in the same tray with AC power wiring and high-
energy, rapidly-switched DC wiring.

Provide adequate clearance for cooling and wiring

54

S7-1200 devices are designed for natural convection cooling. For proper cooling, you must
provide a clearance of at least 25 mm above and below the devices. Also, allow at least 25
mm of depth between the front of the modules and the inside of the enclosure.

A\ caution

For vertical mounting, the maximum allowable ambient temperature is reduced by 10
degrees C.

Orient a vertically mounted S7-1200 system as shown in the following figure.

Ensure that the S7-1200 system is mounted correctly.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation
4.1 Guidelines for installing S7-1200 devices

When planning your layout for the S7-1200 system, allow enough clearance for the wiring
and communications cable connections.

@

2

@ Side view ® Vertical installation
® Horizontal installation @ Clearance area

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 55

Installation

4.2 Power budget

4.2 Power budget

56

Your CPU has an internal power supply that provides power for the CPU, the signal
modules, signal board and communication modules and for other 24 V DC user power
requirements.

Refer to the|technical specifications |(Page|1359) for information about the 5 V DC logic
budget supplied by your CPU and the 5 V DC power requirements of the signal modules,
signal boards, and communication modules. Refer to|"Calculating a power budget"
(Page|1555) to determine how much power (or current) the CPU can provide for your
configuration.

The CPU provides a 24 V DC sensor supply that can supply 24 VV DC for input points, for
relay coil power on the signal modules, or for other requirements. If your 24 V DC power
requirements exceed the budget of the sensor supply, then you must add an external 24 V
DC power supply to your system. Refer to the technical specifications|(Page| 1359) for the
24 'V DC sensor supply power budget for your particular CPU.

If you require an external 24 V DC power supply, ensure that the power supply is not
connected in parallel with the sensor supply of the CPU. For improved electrical noise
protection, it is recommended that the commons (M) of the different power supplies be
connected.

A\ WArRNING

Connecting an external 24 V DC power supply in parallel with the 24 V DC sensor supply
can result in a conflict between the two supplies as each seeks to establish its own
preferred output voltage level

The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system. Unpredictable
operation could result in death, severe personal injury and/or property damage.

The DC sensor supply and any external power supply should provide power to different
points.

Some of the 24 V DC power input ports in the S7-1200 system are interconnected, with a
common logic circuit connecting multiple M terminals. For example, the following circuits are
interconnected when designated as "not isolated" in the data sheets: the 24 V DC power
supply of the CPU, the power input for the relay coil of an SM, or the power supply for a non-
isolated analog input. All non-isolated M terminals must connect to the same external
reference potential.

AWARN ING

Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and any
connected equipment.

Failure to comply with these guidelines could cause damage or unpredictable operation
which could result in death or severe personal injury and/or property damage.

Always ensure that all non-isolated M terminals in an S7-1200 system are connected to the
same reference potential.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.3 Installation and removal procedures

4.3 Installation and removal procedures

431 Mounting dimensions for the S7-1200 devices

CPU 1211C, CPU 1212C, CPU 1214C
(measurements in mm)

» Ble |« B — i 4B B-he
4 | | | |
= 4 | | I |
— — — — — e
o
[Te)
© © cL
e
vy
v ————-|

LA+[< A

CPU 1215C, CPU 1217C ¢ >
(measurements in mm) B !

+c1+{<— c2 —>:¢03+

< A »

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

4“— 75 —>

57

Installation

4.3 Installation and removal procedures

Table 4-1 Mounting dimensions (mm)

S7-1200 Devices Width A | Width B Width C
(mm) (mm) (mm)
CPU CPU 1211C and CPU 1212C 90 45 -
CPU 1214C 110 55 -
CPU 1215C 130 65 (top) Bottom:
C1:325
C2: 65
C3:32.5
CPU 1217C 150 75 Bottom:
C1:37.5
C2:75
C3:37.5
Signal modules | Digital 8 and 16 point 45 22.5 -

Analog 2, 4, and 8 point
Thermocouple 4 and 8 point

RTD 4 point

SM 1278 10 Link-Master

Digital DQ 8 x Relay (Changeover) 70 35 --

Analog 16 point 70 35 --

RTD 8 point

SM 1238 Energy Meter module 45 22.5 -
Communication | CM 1241 RS232, and 30 15 --
interfaces CM 1241 RS422/485

CM 1243-5 PROFIBUS master and
CM 1242-5 PROFIBUS slave

CM 1242-2 AS-i Master

CP 1242-7 GPRS V2

CP 1243-7 LTE-EU

CP 1243-1 DNP3

CP 1243-1 IEC

CP 1243-1

CP1243-1 PCC

CP 1243-8 IRC

RF120C

TS (TeleService) Adapter IE Advanced
TS (Teleservice) Adapter |IE Basic

TS Adapter 30 15 -
TS Module 30 15 -

1 Before installing the TS (TeleService) Adapter IE Advanced or IE Basic, you must first connect the
TS Adapter and a TS module. The total width ("width A") is 60 mm.

S7-1200 Programmable controller
58 System Manual, V4.2, 09/2016, ASE02486680-AK

Installation
4.3 Installation and removal procedures

Each CPU, SM, CM, and CP supports mounting on either a DIN rail or on a panel. Use the
DIN rail clips on the module to secure the device on the rail. These clips also snap into an
extended position to provide screw mounting positions to mount the unit directly on a panel.
The interior dimension of the hole for the DIN clips on the device is 4.3 mm.

A 25 mm thermal zone must be provided above and below the unit for free air circulation.

Installing and removing the S7-1200 devices

The CPU can be easily installed on a standard DIN rail or on a panel. DIN rail clips are
provided to secure the device on the DIN rail. The clips also snap into an extended position
to provide a screw mounting position for panel-mounting the unit.

@ DIN rail installation ® Panelinstallation
® DIN rail clip in latched position ©) Clip in extended position for panel mounting
Before you install or remove any electrical device, ensure that the power to that equipment

has been turned off. Also, ensure that the power to any related equipment has been turned
off.

AWARN ING

Installation or removal of S7-1200 or related equipment with the power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury and/or property damage
due to electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove S7-1200 CPUs or related equipment.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 59

Installation

4.3 Installation and removal procedures

60

Always ensure that whenever you replace or install an S7-1200 device you use the correct
module or equivalent device.

A\ WArRNING

Incorrect installation of an S7-1200 module may cause the program in the S7-1200 to
function unpredictably.

Failure to replace an S7-1200 device with the same model, orientation, or order could result
in death, severe personal injury and/or property damage due to unexpected equipment
operation.

Replace an S7-1200 device with the same model, and be sure to orient and position it
correctly.

AAWARNING

Do not disconnect equipment when a flammable or combustible atmosphere is present.

Disconnection of equipment when a flammable or combustible atmosphere is present may
cause a fire or explosion which could result in death, serious injury and/or property
damage.

Always follow appropriate safety precautions when a flammable or combustible atmosphere
is present.

Note
Electrostatic discharge can damage the device or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap whenever
you handle the device.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.3 Installation and removal procedures

43.2 Installing and removing the CPU

You can install the CPU on a panel or on a DIN rail.

Note

Attach any communication modules to the CPU and install the assembly as a unit. Install
signal modules separately after the CPU has been installed.

Consider the following when installing the units on the DIN rail or on a panel:

For DIN rail mounting, make sure the upper DIN rail clip is in the latched (inner) position
and that the lower DIN rail clip is in the extended position for the CPU and attached CMs.

After installing the devices on the DIN rail, move the lower DIN rail clips to the latched
position to lock the devices on the DIN rail.

For panel mounting, make sure the DIN rail clips are pushed to the extended position.

To install the CPU on a panel, follow these steps:

1.

Locate, drill, and tap the mounting holes (M4), using the dimensions shown in table,
Mounting dimensions (mm)|(Page|57).

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.

Extend the mounting clips from the module. Make sure the DIN rail clips on the top and
bottom of the CPU are in the extended position.

. Secure the module to the panel, using a Pan Head M4 screw with spring and flat washer.

Do not use a flat head screw.

Note

The type of screw will be determined by the material upon which it is mounted. You
should apply appropriate torque until the spring washer becomes flat. Avoid applying
excessive torque to the mounting screws. Do not use a flat head screw.

Note

Using DIN rail stops could be helpful if your CPU is in an environment with high vibration
potential or if the CPU has been installed vertically. Use an end bracket (8WA1808 or
8WA1805) on the DIN rail to ensure that the modules remain connected. If your system is
in a high-vibration environment, then panel-mounting the CPU will provide a greater level
of vibration protection.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 61

Installation
4.3 Installation and removal procedures

Table 4- 2 Installing the CPU on a DIN rail

Task Procedure
1. Install the DIN rail. Secure the rail to the mounting panel every 75 mm.

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

Hook the CPU over the top of the DIN rail.

Pull out the DIN rail clip on the bottom of the CPU to allow the CPU to fit over the rail.
Rotate the CPU down into position on the rail.

Push in the clips to latch the CPU to the rail.

o gk w

Table 4-3 Removing the CPU from a DIN rail

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are dis-
connected from electrical power.

2. Disconnect the 1/0 connectors, wiring, and cables from the
CPU|(Page 68).

3. Remove the CPU and any attached communication modules
as a unit. All signal modules should remain installed.

4. If an SM is connected to the CPU, retract the bus connector:

— Place a screwdriver beside the tab on the top of the sig-
nal module.

— Press down to disengage the connector from the CPU.
— Slide the tab fully to the right.

5. Remove the CPU:
— Pull out the DIN rail clip to release the CPU from the rail.

— Rotate the CPU up and off the rail, and remove the CPU
from the system.

S7-1200 Programmable controller
62 System Manual, V4.2, 09/2016, A5SE02486680-AK

Installation

4.3 Installation and removal procedures

4.3.3 Installing and removing an SB, CB, or BB

Table 4- 4 Installing an SB, CB, or BB 1297

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are disconnect-
ed from electrical power.

2. Remove the top and bottom terminal block covers from the CPU.

3. Place a screwdriver into the slot on top of the CPU at the rear of
the cover.

4. Gently pry the cover straight up and remove it from the CPU.

5. Place the module straight down into its mounting position in the
top of the CPU.

6. Firmly press the module into position until it snaps into place.

7. Replace the terminal block covers.

Table 4-5 Removing an SB, CB or BB 1297

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are disconnect-
ed from electrical power.

2. Remove the top and bottom terminal block covers from the CPU.

3. Remove the signal board connector (if installed) by gently disen-
gaging with a screwdriver.

4. Place a screwdriver into the slot on top of the module.
5. Gently pry the module up to disengage it from the CPU.

6. Without using a screwdriver, remove the module straight up from
its mounting position in the top of the CPU.

7. Replace the cover onto the CPU.
8. Replace the terminal block covers.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 63

Installation

4.3 Installation and removal procedures

Installing or replacing the battery in the BB 1297 battery board

64

The BB 1297 requires battery type CR1025. The battery is not included with the BB 1297
and must be purchased. To install or replace the battery, follow these steps:

1. In the BB 1297, install a new battery with the positive side of the battery on top, and the
negative side next to the printed wiring board.

2. The BB 1297 is ready to be installed in the CPU. Follow the installation directions above
to install the BB 1297.

To replace the battery in the BB 1297:
1. Remove the BB 1297 from the CPU following the removal directions above.

2. Carefully remove the old battery using a small screwdriver. Push the battery out from
under the clip.

3. Install a new CR1025 replacement battery with the positive side of the battery on top and
the negative side next to the printed wiring board.

4. Re-install the BB 1297 battery board following the installation directions above.

A\ WArRNING

Installing an unspecified battery in the BB 1297, or otherwise connecting an unspecified
battery to the circuit can result in fire or component damage and unpredictable operation of
machinery.

Fire or unpredictable operation of machinery can result in death, severe personal injury, or
property damage.

Use only the specified CR1025 battery for backup of the Real-time clock.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.3.4 Installing and removing an SM

Table 4-6 Installing an SM

4.3 Installation and removal procedures

Task

Procedure

Install your SM after installing the CPU.

1. Ensure that the CPU and all S7-1200 equipment are discon-
nected from electrical power.

2. Remove the cover for the connector from the right side of the
CPU:

— Insert a screwdriver into the slot above the cover.
— Gently pry the cover out at its top and remove the cover.
3. Retain the cover for reuse.

Connect the SM to the CPU:
1. Position the SM beside the CPU.
2. Hook the SM over the top of the DIN rail.

3. Pull out the bottom DIN rail clip to allow the SM to fit over the
rail.

4. Rotate the SM down into position beside the CPU and push
the bottom clip in to latch the SM onto the rail.

Extending the bus connector makes both mechanical and elec-
trical connections for the SM.
1. Place a screwdriver beside the tab on the top of the SM.

2. Slide the tab fully to the left to extend the bus connector into
the CPU.

Follow the same procedure to install a signal module to a signal
module.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

65

Installation
4.3 Installation and removal procedures

Table 4-7 Removing an SM

Task Procedure
You can remove any SM without removing the CPU or other SMs in place.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electri-
cal power.

2. Remove the I/O connectors and wiring from the SM|(Page|68).

3. Retract the bus connector.
— Place a screwdriver beside the tab on the top of the SM.
— Press down to disengage the connector from the CPU.
— Slide the tab fully to the right.
If there is another SM to the right, repeat this procedure for that SM.

Remove the SM:

1. Pull out the bottom DIN rail clip to release the SM from the rail.

2. Rotate the SM up and off the rail. Remove the SM from the system.

3. If required, cover the bus connector on the CPU to avoid contamination.
Follow the same procedure to remove a signal module from a signal module.

S7-1200 Programmable controller
66 System Manual, V4.2, 09/2016, A5SE02486680-AK

Installation

4.3 Installation and removal procedures

4.3.5 Installing and removing a CM or CP

Attach any communication modules to the CPU and install the assembly as a unit, as shown
in/Installing and removing the CPU (Page 61).

Table 4- 8 Installing a CM or CP

Task Procedure
1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Attach the CM to the CPU before installing the assembly
as a unit to the DIN rail or panel.

3. Remove the bus cover from the left side of the CPU:
— Insert a screwdriver into the slot above the bus cover.

— Gently pry out the cover at its top.

4. Remove the bus cover. Retain the cover for reuse.
5. Connect the CM or CP to the CPU:

— Align the bus connector and the posts of the CM with
the holes of the CPU

— Firmly press the units together until the posts snap in-
to place.

6. Install the CPU and CP on a DIN rail or panel.

Table 4- 9 Removing a CM or CP

Task Procedure

Remove the CPU and CM as a unit from the DIN rail or panel.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Remove the I/O connectors and all wiring and cables from the CPU and CMs.

3. For DIN rail mounting, move the lower DIN rail clips on the CPU and CMs to the
extended position.

4. Remove the CPU and CMs from the DIN rail or panel.
5. Grasp the CPU and CMs firmly and pull apart.

NOTICE

Separate modules without using a tool.

Do not use a tool to separate the modules because this can damage the units.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 67

Installation
4.3 Installation and removal procedures

4.3.6 Removing and reinstalling the S7-1200 terminal block connector

The CPU, SB and SM modules provide removable connectors to make connecting the wiring
easy.

Table 4- 10 Removing the connector

Task Procedure

Prepare the system for terminal block connector removal by removing the power from
the CPU and opening the cover above the connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Inspect the top of the connector and locate the slot for the tip of the screwdriver.
3. Insert a screwdriver into the slot.

4. Gently pry the top of the connector away from the CPU. The connector will release
with a snap.

5. Grasp the connector and remove it from the CPU.

Table 4- 11 Installing the connector

Task Procedure

Prepare the components for terminal block installation by removing power from the
CPU and opening the cover for connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Align the connector with the pins on the unit.

3. Align the wiring edge of the connector inside the rim of the connector base.

4. Press firmly down and rotate the connector until it snaps into place.

Check carefully to ensure that the connector is properly aligned and fully engaged.

S7-1200 Programmable controller
68 System Manual, V4.2, 09/2016, A5SE02486680-AK

Installation
4.3 Installation and removal procedures

4.3.7 Installing and removing the expansion cable

The S7-1200 expansion cable provides additional flexibility in configuring the layout of your
S7-1200 system. Only one expansion cable is allowed per CPU system. You install the
expansion cable either between the CPU and the first SM, or between any two SMs.

Table 4- 12 Installing and removing the male connector of the expansion cable

Task Procedure
To install the male connector:

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Push the connector into the bus connector on the right
side of the signal module or CPU.

To remove the male connector:

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Pull out the male connector to release it from the signal
module or CPU.

Table 4- 13 Installing the female connector of the expansion cable

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Place the female connector to the bus connector on the
left side of the signal module.

3. Slip the hook extension of the female connector into the
housing at the bus connector and press down slightly
to engage the hook.

4. Lock the connector into place:

— Place a screwdriver beside the tab on the top of the
signal module.
— Slide the tab fully to the left.
To engage the connector, you must slide the connector tab
all the way to the left. The connector tab must be locked
into place.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 69

Installation

4.3 Installation and removal procedures

Table 4- 14 Removing the female connector of the expansion cable

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Unlock the connector:

— Place a screwdriver beside the tab on the top of the
signal module.

— Press down slightly and slide the tab fully to the
right.

3. Lift the connector up slightly to disengage the hook
extension.

4. Remove the female connector.

Note
Installing the expansion cable in a vibration environment

If the expansion cable is connected to modules that move, or are not firmly fixed, the cable
male end snap-on connection can gradually become loose.

Use a cable tie to fix the male end cable on the DIN-rail (or other place) to provide extra
strain relief.

Avoid using excessive force when you pull the cable during installation. Ensure the cable-
module connection is in the correct position once installation is complete.

S7-1200 Programmable controller
70 System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.3 Installation and removal procedures

4.3.8 TS (TeleService) adapter

4.3.8.1 Connecting the TeleService adapter

Before installing the TS (TeleService) Adapter IE Basic or TS (TeleService) Adapter IE
Advanced, you must first connect the TS Adapter and a TS module.

Available TS modules:
® TS module RS232
¢ TS module Modem
® TS module GSM
e TS module ISDN

Note

The TS module can be damaged if you touch the contacts of the plug connector @ of the
TS module.

Follow ESD guidelines in order to avoid damaging the TS module through electrostatic
discharge. Before connecting a TS module and TS Adapter, make sure that both are in an
idle state.

@ TS module @ Plug connector from the TS module
@ TS Adapter @ Cannot be opened
@ Elements @ Ethernet port

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 71

Installation
4.3 Installation and removal procedures

Note
Before connecting a TS module and TS adapter basic unit, ensure that the contact pins @
are not bent.

When connecting, ensure that the male connector and guide pins are positioned correctly.

Only connect a TS module into the TS adapter. Do not force a connection of the TS adapter
to a different device, such as an S7-1200 CPU. Do not change the mechanical construction
of the connector, and do not remove or damage the guide pins.

S7-1200 Programmable controller
72 System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.3 Installation and removal procedures

4.3.8.2 Installing the SIM card
Locate the SIM card slot on the underside of the TS module GSM.

Note

The SIM card may only be removed or inserted if the TS module GSM is de-energized.

Table 4- 15 Installing the SIM card

Task Procedure

Use a sharp object to press the eject
button of the SIM card tray (in the
direction of the arrow) and remove the
SIM card tray.

Place the SIM card in the SIM card
tray as shown and put the SIM card
tray back into its slot.

@ TS Module GSM
® SIM card
® SIM card tray

Note

Ensure that the SIM card is correctly oriented in the card tray. Otherwise, the SIM card will
not make connection with the module, and the eject button may not remove the card tray.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 73

Installation

4.3 Installation and removal procedures

4.3.8.3

74

Installing the TS adapter unit on a DIN rail

Prerequisites: You must have connected the TS Adapter and a TS module together, and the
DIN rail must have been installed.

Note

If you install the TS unit vertically or in high-vibration environment, the TS module can
become disconnected from the TS Adapter. Use an end bracket 8WA1808 on the DIN rail to
ensure that the modules remain connected.

Table 4- 16 Installing and removing the TS Adapter

Task Procedure
@ Installation:

1. Hook the TS Adapter with attached TS module @
on the DIN rail @.

2. Rotate the unit back until it engages.

3. Push in the DIN rail clip on each module to attach
each module to the rail.

Removal:

1. Remove the analog cable and Ethernet cable from
the underside of the TS Adapter.

2. Remove power from the TS Adapter.

3. Use a screwdriver to disengage the rail clips on
both modules.

4. Rotate the unit upwards to remove the unit from the
DIN rail.

AAWARNING

Safety requirements for installing or removing the TS Adapter.

Before you remove power from the unit, disconnect the grounding of the TS Adapter by
removing the analog cable and Ethernet cable. Failure to observe this precaution could
result in death, severe personal injury and/or property damage due to unexpected
equipment operation.

Always follow these requirements when installing or removing the TS Adapter.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation
4.3 Installation and removal procedures

4.3.8.4 Installing the TS adapter on a panel
Prerequisites: You must have connected the TS Adapter and TS module.

1. Move the attachment slider @ to the backside of the TS Adapter and TS module in the
direction of the arrow until it engages.

2. Screw the TS Adapter and TS module to the position marked with @ to the designated
assembly wall.

The following illustration shows the TS Adapter from behind, with the attachment sliders D
in both positions:

PEEN

9
g

108
116

Attachment slider

®O

Drill holes for wall mounting

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 75

Installation

4.4 Wiring guidelines

4.4

Prerequisites

76

Wiring guidelines

Proper grounding and wiring of all electrical equipment is important to help ensure the
optimum operation of your system and to provide additional electrical noise protection for
your application and the S7-1200. Refer to the technical specifications (Page| 1359) for the
S7-1200 wiring diagrams.

Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has
been turned off.

Ensure that you follow all applicable electrical codes when wiring the S7-1200 and related
equipment. Install and operate all equipment according to all applicable national and local
standards. Contact your local authorities to determine which codes and standards apply to
your specific case.

A\ WArRNING

Installation or wiring the S7-1200 or related equipment with power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury, and/or damage due to
electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove the S7-1200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-
1200 system. Electronic control devices, such as the S7-1200, can fail and can cause
unexpected operation of the equipment that is being controlled or monitored. For this reason,
you should implement safeguards that are independent of the S7-1200 to protect against
possible personal injury or equipment damage.

AWARN ING

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment.

Such unexpected operations could result in death, severe personal injury and/or property
damage.

Use an emergency stop function, electromechanical overrides, or other redundant
safeguards that are independent of the S7-1200.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation
4.4 Wiring guidelines

Guidelines for isolation

S7-1200 AC power supply boundaries and 1/0O boundaries to AC circuits have been designed
and approved to provide safe separation between AC line voltages and low voltage circuits.
These boundaries include double or reinforced insulation, or basic plus supplementary
insulation, according to various standards. Components which cross these boundaries such
as optical couplers, capacitors, transformers, and relays have been approved as providing
safe separation. Only circuits rated for AC line voltage include safety isolation to other
circuits. Isolation boundaries between 24 V DC circuits are functional only, and you should
not depend on these boundaries for safety.

The sensor supply output, communications circuits, and internal logic circuits of an S7-1200
with included AC power supply are sourced as SELV (safety extra-low voltage) according to
EN 61131-2.

To maintain the safe character of the S7-1200 low voltage circuits, external connections to
communications ports, analog circuits, and all 24 VV DC nominal power supply and I/O
circuits must be powered from approved sources that meet the requirements of SELV,
PELV, Class 2, Limited Voltage, or Limited Power according to various standards.

A WARNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC
line can result in hazardous voltages appearing on circuits that are expected to be touch
safe, such as communications circuits and low voltage sensor wiring.

Such unexpected high voltages could cause electric shock resulting in death, severe
personal injury and/or property damage.

Only use high voltage to low voltage power converters that are approved as sources of
touch safe, limited voltage circuits.

Guidelines for grounding the S7-1200

The best way to ground your application is to ensure that all the common and ground
connections of your S7-1200 and related equipment are grounded to a single point. This
single point should be connected directly to the earth ground for your system.

All ground wires should be as short as possible and should use a large wire size, such as 2
mm2 (14 AWG).

When locating grounds, consider safety-grounding requirements and the proper operation of
protective interrupting devices.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 77

Installation

4.4 Wiring guidelines

Guidelines for wiring the S7-1200

When designing the wiring for your S7-1200, provide a single disconnect switch that
simultaneously removes power from the S7-1200 CPU power supply, from all input circuits,
and from all output circuits. Provide over-current protection, such as a fuse or circuit breaker,
to limit fault currents on supply wiring. Consider providing additional protection by placing a
fuse or other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges. For more information, see Surge immunity (Page 1359) in the General technical
specifications section.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with
AC wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the
neutral or common wire paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current.

Wire and cable should have a temperature rating 30 °C higher than the ambient temperature
around the S7-1200 (for example, a minimum of 85 °C-rated conductors for 55 °C ambient
temperature). You should determine other wiring type and material requirements from the
specific electrical circuit ratings and your installation environment.

Use shielded wires for optimum protection against electrical noise. Typically, grounding the
shield at the S7-1200 gives the best results. You should ground communication cable
shields to S7-1200 communication connector shells using connectors that engage the cable
shield, or by bonding the communication cable shields to a separate ground. You should
ground other cable shields using clamps or copper tape around the shield to provide a high
surface area connection to the grounding point.

When wiring input circuits that are powered by an external power supply, include an
overcurrent protection device in that circuit. External protection is not necessary for circuits
that are powered by the 24 V DC sensor supply from the S7-1200 because the sensor
supply is already current-limited.

All S7-1200 modules have removable connectors for user wiring. To prevent loose
connections, ensure that the connector is seated securely and that the wire is installed
securely into the connector.

To help prevent unwanted current flows in your installation, the S7-1200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider
these isolation boundaries. Refer to the technical specifications|(Page|1425) for the amount
of isolation provided and the location of the isolation boundaries. Circuits rated for AC line
voltage include safety isolation to other circuits. Isolation boundaries between 24 V DC
circuits are functional only, and you should not depend on these boundaries for safety.

S7-1200 Programmable controller
78 System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.4 Wiring guidelines

A summary of Wiring rules for the S7-1200 CPUs, SMs and SBs is shown below:

Table 4- 17 Wiring rules for S7-1200 CPUs, SMs, and SBs

Wiring rules for... CPU and SM connector SB connector

Connectible conductor 2 mm?2to 0.3 mm2 (14 AWG to 22 | 1.3 mm? to 0.3 mm?2 (16 AWG to 22

cross-sections for stand- | AWG) AWG)

ard wires

Number of wires per con- | 1 or combination of 2 wires up to | 1 or combination of 2 wires up to 1.3

nection 2 mm?2 (total) mm? (total)

Wire strip length 6.4 mm 6.3t0 7 mm

Tightening torque* (maxi- | 0.56 N-m (5 inch-pounds) 0.33 N-m (3 inch-pounds)

mum)

Tool 2.5 to 3.0 mm flathead screw- 2.0 to 2.5 mm flathead screwdriver
driver

* To avoid damaging the connector, be careful that you do not over-tighten the screws.

Note

Ferrules or end sleeves on stranded conductors reduce the risk of stray strands causing
short circuits. Ferrules longer than the recommended strip length should include an
insulating collar to prevent shorts due to side movement of conductors. Cross-sectional area
limits for bare conductors also apply to ferrules.

See also

Technical specifications (Page|1359)

Guidelines for lamp loads

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This
surge current will nominally be 10 to 15 times the steady state current for a Tungsten lamp.
A replaceable interposing relay or surge limiter is recommended for lamp loads that will be
switched a large number of times during the lifetime of the application.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 79

Installation

4.4 Wiring guidelines

Guidelines for inductive loads

80

Use suppressor circuits with inductive loads to limit the voltage rise when a control output
turns off. Suppressor circuits protect your outputs from premature failure caused by the high
voltage transient that occurs when current flow through an inductive load is interrupted.

In addition, suppressor circuits limit the electrical noise generated when switching inductive
loads. High frequency noise from poorly suppressed inductive loads can disrupt the
operation of the PLC. Placing an external suppressor circuit so that it is electrically across
the load and physically located near the load is the most effective way to reduce electrical
noise.

S7-1200 DC outputs include internal suppressor circuits that are adequate for inductive
loads in most applications. Since S7-1200 relay output contacts can be used to switch either
a DC or an AC load, internal protection is not provided.

A good suppressor solution is to use contactors and other inductive loads for which the
manufacturer provides suppressor circuits integrated in the load device, or as an optional
accessory. However, some manufacturer provided suppressor circuits may be inadequate
for your application. An additional suppressor circuit may be necessary for optimal noise
reduction and contact life.

For AC loads, a metal oxide varistor (MOV) or other voltage clamping device may be used
with a parallel RC circuit, but is not as effective when used alone. An MOV suppressor with
no parallel RC circuit often results in significant high frequency noise up to the clamp
voltage.

A well-controlled turn-off transient will have a ring frequency of no more than 10 kHz, with
less than 1 kHz preferred. Peak voltage for AC lines should be within +/- 1200 V of ground.
Negative peak voltage for DC loads using the PLC internal suppression will be ~40 V below
the 24 V DC supply voltage. External suppression should limit the transient to within 36 V of
the supply to unload the internal suppression.

Note

The effectiveness of a suppressor circuit depends on the application and must be verified for
your particular usage. Ensure that all components are correctly rated and use an
oscilloscope to observe the turn-off transient.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Installation

4.4 Wiring guidelines

Typical suppressor circuit for DC or relay outputs that switch DC inductive loads

OO

Ll

1N4001 diode or equivalent

8.2 V Zener (DC outputs),
36 V Zener (Relay outputs)

Output point
M, 24 V reference

©®0 00 ©

In most applications, the addition of a diode (A)
across a DC inductive load is suitable, but if your
application requires faster turn-off times, then the
addition of a zener diode (B) is recommended. Be
sure to size your zener diode properly for the amount
of current in your output circuit.

Typical suppressor circuit for relay outputs that switch AC inductive loads

®© &

— ——W—

MOV

@ See table for C value

(@ See table for R value
® Output point

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

Ensure that the working voltage of the metal oxide
varistor (MOV) is at least 20% greater than the nomi-
nal line voltage.

Choose pulse-rated, non-inductive resistors, and
capacitors recommended for pulse applications (typi-
cally metal film). Verify the components meet aver-
age power, peak power, and peak voltage
requirements.

81

Installation
4.4 Wiring guidelines

If you design your own suppressor circuit, the following table suggests resistor and capacitor
values for a range of AC loads. These values are based on calculations with ideal
component parameters. | rms in the table refers to the steady-state current of the load when
fully ON.

Table 4- 18 AC suppressor circuit resistor and capacitor values

Inductive load Suppressor values
I rms 230 VAC 120 V AC Resistor Capacitor
Amps VA VA Q W (power rating) nF
0.02 4.6 24 15000 0.1 15
0.05 11.5 6 5600 0.25 470
0.1 23 12 2700 0.5 100
0.2 46 24 1500 1 150
0.5 115 60 560 25 470
230 120 270 5 1000
2 460 240 150 10 1500

Conditions satisfied by the table values:
Maximum turn-off transition step < 500 V
Resistor peak voltage < 500 V
Capacitor peak voltage < 1250 V
Suppressor current < 8% of load current (50 Hz)
Suppressor current < 11% of load current (60 Hz)
Capacitor dV/dt < 2 V/us
Capacitor pulse dissipation : j(dv/dt)2 dt < 10000 V2/ps
Resonant frequency < 300 Hz
Resistor power for 2 Hz max switching frequency
Power factor of 0.3 assumed for typical inductive load

Guidelines for differential inputs and outputs

Differential inputs and outputs behave differently than standard inputs and outputs. There
are two pins per differential input and output. Determining whether a differential input or
output is on or off requires that you measure the voltage difference between these two pins.

See the detailed specifications for the CPU 1217C in Appendix A|(Page|1425).

S7-1200 Programmable controller
82 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepts 5

5.1

Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient
structure for your user program:

® Organization blocks (OBs) define the structure of the program. Some OBs have
predefined behavior and start events, but you can also create OBs with custom start
events.

® Functions (FCs) and function blocks (FBs) contain the program code that corresponds to
specific tasks or combinations of parameters. Each FC or FB provides a set of input and
output parameters for sharing data with the calling block. An FB also uses an associated
data block (called an instance DB) to maintain the data values for that instance of the FB
call. You can call an FB multiple times, each time with a unique instance DB. Calls to the
same FB with different instance DBs do not affect the data values in any of the other
instance DBs.

e Data blocks (DBs) store data that can be used by the program blocks.

Execution of the user program begins with one or more optional startup organization blocks
(OBs) which execute once upon entering RUN mode, followed by one or more program cycle
OBs that execute cyclically. You can also associate an OB with an interrupt event, which can
be either a standard event or an error event. These OBs execute whenever the
corresponding standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from
an OB or from another FC or FB, down to the following nesting depths:

® 16 from the program cycle or startup OB
e 6 from any interrupt event OB

FCs are not associated with any particular data block (DB). FBs are tied directly to a DB and
use the DB for passing parameters and storing interim values and results.

The size of the user program, data, and configuration is limited by the available load memory
and work memory in the CPU. There is no specific limit to the number of each individual OB,
FC, FB and DB block. However, the total number of blocks is limited to 1024.

Each cycle includes writing the outputs, reading the inputs, executing the user program
instructions, and performing background processing. The cycle is referred to as a scan cycle
or scan.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 83

PLC concepfts

5.1 Execution of the user program

Your S7-1200 automation solution can consist of a central rack with the S7-1200 CPU and
additional modules. The term "central rack" refers to either the rail or panel installation of the
CPU and associated modules. The modules (SM, SB, BB, CB, CM or CP) are detected and
logged in only upon powerup.

® [nserting or removing a module in the central rack under power (hot) is not supported.
Never insert or remove a module from the central rack when the CPU has power.

A WARNING

Safety requirements for inserting or removing modules

Insertion or removal of a module (SM, SB, BB, CD, CM or CP) from the central rack
when the CPU has power could cause unpredictable behavior, resulting in damage to
equipment and/or injury to personnel.

Always remove power from the CPU and central rack and follow appropriate safety
precautions before inserting or removing a module from the central rack.

® You can insert or remove a SIMATIC memory card while the CPU is under power.
However, inserting or removing a memory card when the CPU is in RUN mode causes
the CPU to go to STOP mode.

NOTICE

Risks with removing memory card when CPU is in RUN mode.

Insertion or removal of a memory card when the CPU is in RUN mode causes the CPU
to go to STOP, which might result in damage to the equipment or the process being
controlled.

Whenever you insert or remove a memory card, the CPU immediately goes to STOP
mode. Before inserting or removing a memory card, always ensure that the CPU is not
actively controlling a machine or process. Always install an emergency stop circuit for
your application or process.

® |f you insert or remove a module in a distributed 1/0 rack (AS-i, PROFINET, or
PROFIBUS) when the CPU is in RUN mode, the CPU generates an entry in the
diagnostics buffer, executes the pull or plug of modules OB if present, and by default
remains in RUN mode.

S7-1200 Programmable controller
84 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.1 Execution of the user program

Process image update and process image partitions

The CPU updates local digital and analog 1/O points synchronously with the scan cycle using
an internal memory area called the process image. The process image contains a snapshot
of the physical inputs and outputs (the physical I/O points on the CPU, signal board, and
signal modules).

You can configure 1/0 points to be updated in the process image every scan cycle or when a
specific event interrupt occurs. You can also configure an 1/O point to be excluded from
process image updates. For example, your process might only need certain data values
when an event such as a hardware interrupt occurs. By configuring the process image
update for these 1/O points to be associated with a partition that you assign to a hardware
interrupt OB, you avoid having the CPU update data values unnecessarily every scan cycle
when your process does not need a continual update.

For 1/0O that is updated every scan cycle, the CPU performs the following tasks during each
scan cycle:

e The CPU writes the outputs from the process image output area to the physical outputs.

e The CPU reads the physical inputs just prior to the execution of the user program and
stores the input values in the process image input area. These values thus remain
consistent throughout the execution of the user instructions.

e The CPU executes the logic of the user instructions and updates the output values in the
process image output area instead of writing to the actual physical outputs.

This process provides consistent logic through the execution of the user instructions for a
given cycle and prevents the flickering of physical output points that might change state
multiple times in the process image output area.

For controlling whether your process updates 1/O points automatically on every scan cycle,
or upon the triggering of events, the S7-1200 provides five process image partitions. The first
process image partition, PIPO, is designated for 1/O that is to be automatically updated every
scan cycle, and is the default assignment. You can use the remaining four partitions, PIP1,
PIP2, PIP3, and PIP4 for assigning I/O process image updates to various interrupt events.
You assign I/O to process image partitions in Device Configuration and you assign process
image partitions to interrupt events when you|create interrupt OBs (Page 188) or|edit OB
properties (Page 188).

By default, when you insert a module in the device view, STEP 7 sets its I/O process image
update to "Automatic update". For I/O configured for "Automatic update", the CPU handles
the data exchange between the module and the process image area automatically during
every scan cycle.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 85

PLC concepfts

5.1 Execution of the user program

86

To assign digital or analog points to a process image partition, or to exclude 1/O points from
process image updates, follow these steps:

1. View the Properties tab for the appropriate device in Device configuration.

Expand the selections under "General" as necessary to locate the desired I/O points.
Select "lI/O addresses".

Optionally select a specific OB from the "Organization block" drop-down list.

o > w DN

From the "Process image" drop-down list, change "Automatic update" to "PIP1", "PIP2",
"PIP3", "PIP4" or "None". A selection of "None" means that you can only read from and
write to this 1/0 using immediate instructions. To add the points back to the process
image automatic update, change this selection back to "Automatic update".

o Properties [*Lainie @)L
General 10 tags Teads
» Gemarsl
» PAOFINET intertace
- Dramatn Input addresses
General
b Diginal inguts Start sddreas: | 0
¥ Diginsl pupus
U0 addeestes

Hardhwans idertifer

W0 adckesses

Organimtion bl ~ (sl L

Bz Freceun image sutzm

¥ High spesd countan (HES :
» Pulze generacors (FEOIPWAY Dutpud addresses Auztorranc updae
Srartg

", -
Gydle S addess [Feed bz
Cammunic enion lead = FP3
3yvtarr and dack mamary R a
¥ Web serer 0 Servg FE
tirmm af hiry Procesy image
Userinpzrface langueges
Preteetion
CONNECHON MIguroes
Cuerdzw ol addresses

vl X

You can immediately read physical input values and immediately write physical output
values when an instruction executes. An immediate read accesses the current state of the
physical input and does not update the process image input area, regardless of whether the
point is configured to be stored in the process image. An immediate write to the physical
output updates both the process image output area (if the point is configured to be stored in
the process image) and the physical output point. Append the suffix ":P" to the I/O address if
you want the program to immediately access I/O data directly from the physical point instead
of using the process image.

Note
Use of process image partitions

If you assign 1/O to one of the process image partitions PIP1 - PIP4, and do not assign an
OB to that partition, then the CPU never updates that I/O to or from the process image.
Assigning I/O to a PIP that does not have a corresponding OB assignment, is the same as
assigning the process image to "None". You can read the /O directly from the physical I/0O
with an immediate read instruction, or write to the physical I/O with an immediate write
instruction. The CPU does not update the process image.

The CPU supports distributed 1/0 for PROFINET, PROFIBUS, and AS-i networks
(Page 799).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

5.1.1 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode.
Status LEDs on the front of the CPU indicate the current mode of operation.

® |In STOP mode, the CPU is not executing the program. You can download a project.

® |In STARTUP mode, the startup OBs (if present) execute once. The CPU does not
process interrupt events during the startup mode.

® In RUN mode, the program cycle OBs execute repeatedly. Interrupt events can occur and
the corresponding interrupt event OBs can execute at any point within the RUN mode.
You can/download some parts of a project in RUN mode |(Page 1335).

The CPU supports a warm restart for entering the RUN mode. Warm restart does not include
a memory reset. The CPU initializes all non-retentive system and user data at warm restart,
and retains the values of all retentive user data.

A memory reset clears all work memory, clears retentive and non-retentive memory areas,
copies load memory to work memory, and sets outputs to the configured "Reaction to CPU
STOP". A memory reset does not clear the diagnostics buffer or the permanently saved
values of the IP address.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 87

PLC concepfts

5.1 Execution of the user program

You can configure the "startup after POWER ON" setting of the CPU. This configuration item
appears under the "Device configuration" for the CPU under "Startup". Upon powering up,
the CPU performs a sequence of power-up diagnostic checks and system initialization.
During system initialization the CPU deletes all non-retentive bit (M) memory and resets all
non-retentive DB contents to the initial values from load memory. The CPU retains retentive
bit (M) memory and retentive DB contents and then enters the appropriate operating mode.
Certain detected errors prevent the CPU from entering the RUN mode. The CPU supports
the following configuration choices:

® No restart (stay in STOP mode)
e \Warm restart - RUN
e \Warm restart - mode prior to POWER OFF

Startup

Startup sfter POWERON: | Warm restart-RUN -
Mo restart {stay in STOP mode)

Comparison presetto actual

P LY o restart - RUN

Warm restart - mode before POWER OFF *,

Configuration time for central
and distributed JQ: | 50000 ms

B OBs should be interruptible

NOTICE

Repairable faults can cause the CPU to enter STOP mode.

The CPU can enter STOP mode due to repairable faults, such as failure of a
replaceable signal module, or temporary faults, such as power line disturbance or erratic
power up event. Such conditions could result in property damage.

If you have configured the CPU to "Warm restart - mode prior to POWER OFF", the
CPU goes to the operating mode it was in prior to the loss of power or fault. If the CPU
was in STOP mode at the time of power loss or fault, the CPU goes to STOP mode on
power up and stays in STOP mode until it receives a command to go to RUN mode. If
the CPU was in RUN mode at the time of power loss or fault, the CPU goes to RUN
mode on the next power up providing it detects no errors that would inhibit a transition to
RUN mode.

Configure CPUs that are intended to operate independently of a STEP 7 connection to
"Warm restart - RUN" so that the CPU can return to RUN mode on the next power cycle.

S7-1200 Programmable controller
88 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

You can change the current operating mode using the|"STOP" or "RUN" commands
(Page|1321) from the online tools of the programming software. You can also include a|STP
instruction|(Page|310) in your program to change the CPU to STOP mode. This allows you
to stop the execution of your program based on the program logic.

® |n STOP mode, the CPU handles any communication requests (as appropriate) and
performs self-diagnostics. The CPU does not execute the user program, and the
automatic updates of the process image do not occur.

® |n STARTUP and RUN modes, the CPU performs the tasks shown in the following figure:

STARTUP

A
B

S7-1200 Programmable controller

Clears the | (image) memory area
Initializes the Q output (image)
memory area with either zero, the last
value, or the substitute value, as con-
figured, and zeroes PB, PN, and AS-i
outputs

Initializes non-retentive M memory and
data blocks to their initial value and
enables configured cyclic interrupt and
time of day events.

Executes the startup OBs.

Copies the state of the physical inputs
to | memory

Stores any interrupt events into the
queue to be processed after entering
RUN mode

Enables the writing of Q memory to the
physical outputs

System Manual, V4.2, 09/2016, ASE02486680-AK

RUN
@ Writes Q memory to the physical outputs

@ Copies the state of the physical inputs to |
memory

(® Executes the program cycle OBs

@ Performs self-test diagnostics

® Processes interrupts and communications
during any part of the scan cycle

89

PLC concepfts

5.1 Execution of the user program

STARTUP processing

90

Whenever the operating mode changes from STOP to RUN, the CPU clears the process
image inputs, initializes the process image outputs and processes the startup OBs. Any read
accesses to the process-image inputs by instructions in the startup OBs read zero rather
than the current physical input value. Therefore, to read the current state of a physical input
during the startup mode, you must perform an immediate read. The startup OBs and any
associated FCs and FBs are executed next. If more than one startup OB exists, each is
executed in order according to the OB number, with the lowest OB number executing first.

Each startup OB includes startup information that helps you determine the validity of
retentive data and the time-of-day clock. You can program instructions inside the startup
OBs to examine these startup values and to take appropriate action. The following startup
locations are supported by the Startup OBs:

Table 5-1 Startup locations supported by the startup OB

Input Data Type Description

LostRetentive | Bool This bit is true if the retentive data storage areas have been lost

LostRTC Bool This bit is true if the time-of-day clock (Real time Clock) has been
lost

The CPU also performs the following tasks during the startup processing:
® Interrupts are queued but not processed during the startup phase
® No cycle time monitoring is performed during the startup phase

e Configuration changes to HSC (high-speed counter), PWM (pulse-width modulation), and
PtP (point-to-point communication) modules can be made in startup

® Actual operation of HSC, PWM and point-to-point communication modules only occurs in
RUN

After the execution of the startup OBs finishes, the CPU goes to RUN mode and processes
the control tasks in a continuous scan cycle.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

5.1.2 Processing the scan cycle in RUN mode

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user
program, updates communication modules, and responds to user interrupt events and
communication requests. Communication requests are handled periodically throughout the
scan.

These actions (except for user interrupt events) are serviced regularly and in sequential
order. User interrupt events that are enabled are serviced according to priority in the order in
which they occur. For interrupt events, the CPU reads the inputs, executes the OB, and then
writes the outputs, using the associated process image partition (PIP), if applicable.

The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.

® Each scan cycle begins by retrieving the current values of the digital and analog outputs
from the process image and then writing them to the physical outputs of the CPU, SB,
and SM modules configured for automatic 1/0O update (default configuration). When a
physical output is accessed by an instruction, both the output process image and the
physical output itself are updated.

® The scan cycle continues by reading the current values of the digital and analog inputs
from the CPU, SB, and SMs configured for automatic I/O update (default configuration),
and then writing these values to the process image. When a physical input is accessed
by an instruction, the value of the physical input is accessed by the instruction, but the
input process image is not updated.

e After reading the inputs, the user program is executed from the first instruction through
the end instruction. This includes all the program cycle OBs plus all their associated FCs
and FBs. The program cycle OBs are executed in order according to the OB number with
the lowest OB number executing first.

Communications processing occurs periodically throughout the scan, possibly interrupting
user program execution.

Self-diagnostic checks include periodic checks of the system and the I/O module status
checks.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event
occurs, the CPU interrupts the scan cycle and calls the OB that was configured to process
that event. After the OB finishes processing the event, the CPU resumes execution of the
user program at the point of interruption.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 91

PLC concepfts

5.1 Execution of the user program

5.1.3

5.1.3.1

Organization blocks (OBs)

OBs control the execution of the user program. Specific events in the CPU trigger the
execution of an organization block. OBs cannot call each other or be called from an FC or
FB. Only an event such as a diagnostic interrupt or a time interval can start the execution of
an OB. The CPU handles OBs according to their respective priority classes, with higher
priority OBs executing before lower priority OBs. The lowest priority class is 1 (for the main
program cycle), and the highest priority class is 26.

Program cycle OB

Program cycle OBs execute cyclically while the CPU is in RUN mode. The main block of the
program is a program cycle OB. This is where you place the instructions that control your
program and where you call additional user blocks. You can have multiple program cycle
OBs, which the CPU executes in numerical order. Main (OB 1) is the default.

Program cycle events

92

The program cycle event happens once during each program cycle (or scan). During the
program cycle, the CPU writes the outputs, reads the inputs and executes program cycle
OBs. The program cycle event is required and is always enabled. You might have no
program cycle OBs, or you might have multiple OBs selected for the program cycle event.
After the program cycle event occurs, the CPU executes the lowest numbered program cycle
OB (usually "Main" OB 1). The CPU executes the other program cycle OBs sequentially (in
numerical order) within the program cycle. Program execution is cyclical such that the
program cycle event occurs at the following times:

® When the last startup OB finishes execution

® When the last program cycle OB finishes execution

Table 5-2 Start information for a program cycle OB

Input Data type Description
Initial_Call Bool True for initial call of the OB
Remanence Bool True if retentive data are available

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1.3.2

Startup events

5.1.3.3

5.1 Execution of the user program

Startup OB

Startup OBs execute one time when the operating mode of the CPU changes from STOP to
RUN, including powering up in the RUN mode and in commanded STOP-to-RUN transitions.
After completion, the main "Program cycle" begins executing.

The startup event happens one time on a STOP to RUN transition and causes the CPU to
execute the startup OBs. You can configure multiple OBs for the startup event. The startup
OBs execute in numerical order.

Table 5-3 Start information for a startup OB

Input Data type Description
LostRetentive | Bool True if retentive data are lost
LostRTC Bool True if date and time are lost

Time delay interrupt OB

Time delay interrupt OBs execute after a time delay that you configure.

Time delay interrupt events

You configure time delay interrupt events to occur after a specified delay time has expired.
You assign the delay time with the SRT_DINT instruction. The time delay events interrupt the
program cycle to execute the corresponding time delay interrupt OB. You can attach only
one time delay interrupt OB to a time delay event. The CPU supports four time delay events.

Table 5-4 Start information for a time delay interrupt OB

Input Data type Description
Sign Word Identifier passed to triggering call of SRT_DINT

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 93

PLC concepfts

5.1 Execution of the user program

5.1.34

Cyclic interrupt OB

Cyclic interrupt OBs execute at a specified interval. You can configure up to a total of four
cyclic interrupt events, with one OB corresponding to each cyclic interrupt event.

Cyclic interrupt events

94

The cyclic interrupt events allow you to configure the execution of an interrupt OB at a
configured cycle time. You configure the initial cycle time when you create the cyclic interrupt
OB. A cyclic event interrupts the program cycle and executes the corresponding cyclic
interrupt OB. Note that the cyclic interrupt event is at a higher priority class than the program
cycle event.

You can attach only one cyclic interrupt OB to a cyclic event.

You can assign a phase shift to each cyclic interrupt so that the execution of cyclic interrupts
can be offset from one another by the phase offset amount. For example, if you have a 5 ms
cyclic event and a 10 ms cyclic event, every ten milliseconds both events occur at the same
moment. If you phase shift the 5 ms event by 1 to 4 ms and the 10 ms event by 0 ms, then
the two events do not occur at the same moment.

The default phase offset is 0. To change the initial phase shift, or to change the cyclic time
for a cyclic event, follow these steps:

1. Right-click the cyclic interrupt OB in the project tree.
2. Select "Properties" from the context menu.

3. Click "Cyclic interrupt" from the "Cyclic interrupt [OB 30]" dialog, and enter the new initial
values.

The maximum phase offset is 6000 ms (6 seconds) or the maximum Cyclic time, whichever
is smaller.

You can also query and change the scan time and the phase shift from your program using
the Query cyclic interrupt (QRY_CINT) and Set cyclic interrupt (SET_CINT) instructions.
Scan time and phase shift values set by the SET_CINT instruction do not persist through a
power cycle or a transition to STOP mode; scan time and phase shift values return to the
initial values following a power cycle or a transition to STOP. The CPU supports a total of
four cyclic interrupt events.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.1 Execution of the user program

5.1.3.5 Hardware interrupt OB

Hardware interrupt OBs execute when the relevant hardware event occurs. A hardware
interrupt OB interrupts normal cyclic program execution in reaction to a signal from a
hardware event.

Hardware interrupt events

Changes in the hardware, such as a rising or falling edge on an input point, or an HSC (High
Speed Counter) event trigger hardware interrupt events. The S7-1200 supports one interrupt
OB for each hardware interrupt event. You enable the hardware events in the device
configuration, and assign an OB for an event in the device configuration or with an ATTACH
instruction in the user program. The CPU supports several hardware interrupt events. The
CPU model and the number of input points determine the exact events that are available.

Limits on hardware interrupt events are as follows:
Edges:

® Rising edge events: maximum of 16

e Falling edge events: maximum of 16

HSC events:

e CV=PV: maximum of 6

e Direction changed: maximum of 6

® External reset: maximum of 6

Table 5- 5 Start information for a hardware interrupt OB

Input Data type Description

LADDR HW_IO Hardware identifier of the module that triggered the hardware inter-
rupt

usl WORD User structure identifier (16#0001 to 16#FFFF), reserved for future
use

IChannel USINT Number of the channel that triggered the interrupt

EventType BYTE Identifier for the module-specific event type associated with the
event triggering the interrupt, for example falling edge or rising
edge.

The bits in EventType depend on the triggering module as shown below:

Module / Sub- | Value Process event

module

Onboard I/0 16#0 Rising edge

from 16#1 Falling edge

CPU or SB

HSC 16#0 HSC CV=RV1
16#1 HSC direction changed
16#2 HSC reset
16#3 HSC CV=RV2

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 95

PLC concepfts

5.1 Execution of the user program

5.1.3.6

Time error interrupt OB

If configured, the time error interrupt OB (OB 80) executes when either the scan cycle
exceeds the maximum cycle time or a time error event occurs. If triggered, it executes,
interrupting normal cyclic program execution or any other event OB.

The occurrence of either of these events generates a diagnostic buffer entry describing the
event. The diagnostic buffer entry is generated regardless of the existence of the time error
interrupt OB.

Time error interrupt events

96

The occurrence of any of several different time error conditions results in a time error event:
® Scan cycle exceeds maximum cycle time

The "maximum cycle time exceeded" condition results if the program cycle does not
complete within the specified maximum scan cycle time. See the section on "Monitoring
the cycle time in the S7-1200 System Manual"|(Page|109) for more information regarding
the maximum cycle time condition, how to configure the maximum scan cycle time in the
properties of the CPU, and how to reset the cycle timer.

® CPU cannot start requested OB because a second time interrupt (cyclic or time-delay)
starts before the CPU finishes execution of the first interrupt OB

® Queue overflow occurred

The "queue overflow occurred" condition results if the interrupts are occurring faster than
the CPU can process them. The CPU limits the number of pending (queued) events by
using a different queue for each event type. If an event occurs when the corresponding
queue is full, the CPU generates a time error event.

All time error events trigger the execution of the time error interrupt OB if it exists. If the time
error interrupt OB does not exist, then the device configuration of the CPU determines the
CPU reaction to the time error:

e The default configuration for time errors, such as starting a second cyclic interrupt before
the CPU has finished the execution of the first, is for the CPU to stay in RUN.

® The default configuration for exceeding the maximum time is for the CPU to change to
STOP.

The user program can extend the program cycle execution time up to ten times the
configured maximum cycle time by executing the|RE_TRIGR instruction|(Page|309) to
restart the cycle time monitor. However, if two "maximum cycle time exceeded" conditions
occur within the same program cycle without resetting the cycle timer, then the CPU
transitions to STOP, regardless of whether the time error interrupt OB exists. See the section
on "Monitoring the cycle time in the S7-1200 System Manual"/(Page 109).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.1 Execution of the user program

Time error interrupt OB includes start information that helps you determine which event and
OB generated the time error. You can program instructions inside the OB to examine these
start values and to take appropriate action.

Table 5-6 Start information for the time error OB (OB 80)

Input Data type Description

fault_id BYTE 16#01 - maximum cycle time exceeded
16#02 - requested OB cannot be started
16#07 and 16#09 - queue overflow occurred

csg_OBnr OB_ANY Number of the OB which was being executed when the error oc-
curred
csg_prio UINT Priority of the OB causing the error

To include a time error interrupt OB in your project, you must add a time error interrupt by
double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Time error interrupt".

The priority for a new V4.0 CPU is 22. If you|exchange a V3.0 CPU for a V4.0 CPU
(Page 1571), the priority is 26, the priority that was in effect for V3.0. In either case, the
priority field is editable and you can set the priority to any value in the range 22 to 26.

5.1.3.7 Diagnostic error interrupt OB

The diagnostic error interrupt OB executes when the CPU detects a diagnostic error, or if a
diagnostics-capable module recognizes an error and you have enabled the diagnostic error
interrupt for the module. The diagnostic error interrupt OB interrupts the normal cyclic
program execution. You can include an STP instruction in the diagnostic error interrupt OB to
put the CPU in STOP mode if you desire your CPU to enter STOP mode upon receiving this
type of error.

If you do not include a diagnostic error interrupt OB in your program, the CPU ignores the
error and stays in RUN mode.

Diagnostic error events

Analog (local), PROFINET, PROFIBUS, and some digital (local) devices are capable of
detecting and reporting diagnostic errors. The occurrence or removal of any of several
different diagnostic error conditions results in a diagnostic error event. The following
diagnostic errors are supported:

e No user power

e High limit exceeded
® |ow limit exceeded
® Wire break

e Short circuit

Diagnostic error events trigger the execution of the diagnostic error interrupt OB (OB 82) if it
exists. If it does not exist, then the CPU ignores the error.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 97

PLC concepfts

5.1 Execution of the user program

98

To include a diagnostic error interrupt OB in your project, you must add a diagnostic error
interrupt by double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Diagnostic error interrupt".

Note
Diagnostic errors for multi-channel local analog devices (I//0O, RTD, and Thermocouple)

The diagnostic error interrupt OB can process only one channel's diagnostic error at a time.

If two channels of a multi-channel device have an error, then the second error only triggers
the diagnostic error interrupt OB under the following conditions: the first channel error clears,
the execution of the diagnostic error interrupt OB that the first error triggered is complete,
and the second error still exists.

The diagnostic error interrupt OB includes startup information that helps you determine
whether the event is due to the occurrence or removal of an error, and the device and
channel which reported the error. You can program instructions inside the diagnostic error
interrupt OB to examine these startup values and to take appropriate action.

Note

Diagnostic error OB Start information references the submodule as a whole if no diagnostic
event is pending

In V3.0, the start information for an outgoing diagnostic error event always indicated the
source of the event. In V4.0, if the outgoing event leaves the submodule with no pending
diagnostics, the start information references the submodule as a whole (16#8000) even if the
source of the event was a specific channel.

For example, if a wire break triggers a diagnostic error event on channel 2, the fault is then
corrected, and the diagnostic error event is cleared, the Start information will not reference
channel 2, but the submodule (16#8000).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

Table 5-7

5.1 Execution of the user program

Startup information for the diagnostic error interrupt OB

Input

Data type

Description

|Ostate

WORD

IO state of the device:

e Bit 0 =1 if the configuration is correct, and = 0 if the configura-
tion is no longer correct.

e Bit4 =1 if an error is present (such as a wire break). (Bit4 = 0 if
there is no error.)

e Bit 5 =1 if the configuration is not correct, and = 0 if the configu-
ration is correct again.

e Bit7 =1ifan /O access error has occurred. Refer to LADDR for
the hardware identifier of the 1/0 with the access error. (Bit6 =0
if there is no error.)

LADDR

HW_ANY

Hardware identifier of the device or functional unit that reported the
error?

Channel

UINT

Channel number

MultiError

BOOL

TRUE if more than one error is present

1 The LADDR input contains the hardware identifier of the device or functional unit which returned
the error. The hardware identifier is assigned automatically when components are inserted in the
device or network view and appears in the Constants tab of PLC tags. A name is also assigned
automatically for the hardware identifier. These entries in the Constants tab of the PLC tags can-
not be changed.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

99

PLC concepfts

5.1 Execution of the user program

5.1.3.8 Pull or plug of modules OB

The "Pull or plug of modules" OB executes when a configured and non-disabled distributed
I/0 module or submodule (PROFIBUS, PROFINET, AS-i) generates an event related to
inserting or removing a module.

Pull or plug of modules event

The following conditions generate a pull of plug of modules event:

® Someone removes or inserts a configured module

® A configured module is not physically present in an expansion rack

e An incompatible module is in an expansion rack that does not correspond to the
configured module

® A compatible module for a configured module is in an expansion rack, but the
configuration does not allow substitutes

® A module or submodule has parameterization errors

If you have not programmed this OB, the CPU remains in RUN mode when any of these
conditions occur with a configured and non-disabled distributed I/O module.

Regardless of whether you have programmed this OB, the CPU changes to STOP mode
when any of these conditions occur with a module in the central rack.

Table 5-8 Start information for pull or plug of modules OB
Input Data type Description
LADDR HW_IO Hardware identifier
Event_Class Byte 16#38: module inserted
16#29: module removed
Fault_ID Byte Fault identifier

100

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1.3.9 Rack or station failure OB

The "Rack or station failure" OB executes when the CPU detects the failure or

5.1 Execution of the user program

communication loss of a distributed rack or station.

Rack or station failure event

The CPU generates a rack or station failure event when it detects one of the following:

® The failure of a DP master system or of a PROFINET 10 system (in the case of either an
incoming or an outgoing event).

e The failure of a DP slave or of an 10 device (in the case of either an incoming or an
outgoing event)

® Failure of some of the submodules of a PROFINET I-device

If you have not programmed this OB, the CPU remains in RUN mode when any of these
conditions occur.

Table 5- 9 Start information for rack or station failure OB
Input Data type Description
LADDR HW_IO Hardware identifier
Event_Class Byte 16#32: Activation of a DP slave or an 10 device
16#33: Deactivation of a DP slave or an IO device
16#38: outgoing event
16#39: incoming event
Fault_ID Byte Fault identifier

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

101

PLC concepfts

5.1 Execution of the user program

5.1.3.10

Time of day events

5.1.3.11

Status events

102

Time of day OB

Time of day OBs execute based on configured clock time conditions. The CPU supports two
time of day OBs.

You can configure a time of day interrupt event to occur once on a specified date or time or
cyclically with one of the following cycles:

Every minute: The interrupt occurs every minute.
Hourly: The interrupt occurs every hour.
Daily: The interrupt occurs every day at a specified time (hour and minute).

Weekly: The interrupt occurs every week at a specified time on a specified day of the
week (for example, every Tuesday at 4:30 in the afternoon).

Monthly: The interrupt occurs every month at a specified time on a specified day of the
month. The day number must be between 1 and 28, inclusive.

Every end of month: The interrupt occurs on the last day of every month at a specified
time.

Yearly: The interrupt occurs every year on the specified date (month and day). You
cannot specify a date of February 29.

Table 5- 10 Start information for a time of day event OB

Input Data type Description
CaughtUp Bool OB call is caught up because time was set forward
SecondTimes | Bool OB call is started a second time because time was set backward

Status OB

Status OBs execute if a DPV1 or PNIO slave triggers a status interrupt. This might be the
case if a component (module or rack) of a DPV1 or PNIO slave changes its operating mode,
for example from RUN to STOP.

For detailed information on events that trigger a status interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 5- 11 Start information for status OB
Input Data type Description
LADDR HW_IO Hardware identifier
Slot Ulnt Slot number
Specifier Word Alarm specifier

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.1 Execution of the user program

5.1.3.12 Update OB

Update OBs execute if a DPV1 or PNIO slave triggers an update interrupt.

Update events

For detailed information on events that trigger an update interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 5- 12 Start information for update OB

Input Data type Description

LADDR HW_IO Hardware identifier

Slot Ulint Slot number

Specifier Word Alarm specifier
5.1.3.13 Profile OB

Profile OBs execute if a DPV1 or PNIO slave triggers a profile-specific interrupt.

Profile events
For detailed information on events that trigger a profile interrupt, refer to the manufacturer's

documentation for the DPV1 or PNIO slave.

Table 5- 13 Start information for profile OB

Input Data type Description
LADDR HW_IO Hardware identifier
Slot Ulnt Slot number
Specifier Word Alarm specifier

MC-Servo and MC-Interpolator OB

STEP 7 creates the read-only MC-Servo and MC-Interpolator OBs automatically when you
create a motion technology object and set the drive interface to be "Analog drive connection”
or "PROFIDrive". You do not need to edit any OB properties or create this OB directly. The
CPU uses these OBs for closed loop control. Refer to the STEP 7 Information System for
further details.

5.1.3.14

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 103

PLC concepfts

5.1 Execution of the user program

5.1.3.15 MC-PreServo

You can program the MC-PreServo OB to contain program logic for the STEP 7 program to
execute directly before the MC-Servo OB executes.

MC-PreServo events

The MC-PreServo OB allows you to read out the configured application cycle information in

microseconds.

Table 5- 14 Start information for MC-PreServo OB

Input Data type Description
Initial_Call BOOL TRUE indicates first call of this OB on transition from STOP to RUN
PIP_Input BOOL TRUE indicates the associated process image input is up to date.
PIP_Output BOOL TRUE indicates that the CPU transferred the associated process
image output to the outpus in good time after the last cycle.
10_System USINT Number of the distributed 1/O system triggering the interrupt
Event_Count INT n: number of lost cycles
-1: unknown number of cycles lost (for example, because cycle has
changed)
Synchronous | BOOL Reserved
CycleTime UDINT Display of the application cycle configured for the MC-Servo OB in

microseconds

104

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.1 Execution of the user program

5.1.3.16 MC-PostServo

You can program the MC-PreServo OB to contain program logic for the STEP 7 program to
execute directly after the MC-Servo OB executes.

MC-PostServo events

The MC-PreServo OB allows you to read out the configured application cycle information in
microseconds.

Table 5- 15 Start information for MC-PostServo OB

Input Data type Description
Initial_Call BOOL TRUE indicates first call of this OB on transition from STOP to RUN
PIP_Input BOOL TRUE indicates the associated process image input is up to date.
PIP_Output BOOL TRUE indicates that the CPU transferred the associated process
image output to the outpus in good time after the last cycle.
10_System USINT Number of the distributed 1/O system triggering the interrupt
Event_Count INT n: number of lost cycles
-1: unknown number of cycles lost (for example, because cycle has
changed)
Synchronous | BOOL Reserved
CycleTime UDINT Display of the application cycle configured for the MC-Servo OB in

microseconds

5.1.3.17 Event execution priorities and queuing

The CPU processing is controlled by events. An event triggers an interrupt OB to be
executed. You can specify the interrupt OB for an event during the creation of the block,
during the device configuration, or with an ATTACH or DETACH instruction. Some events
happen on a regular basis like the program cycle or cyclic events. Other events happen only
a single time, like the startup event and time delay events. Some events happen when the
hardware triggers an event, such as an edge event on an input point or a high speed counter
event. Events like the diagnostic error and time error event only happen when an error
occurs. The event priorities and queues are used to determine the processing order for the
event interrupt OBs.

The CPU processes events in order of priority where 1 is the lowest priority and 26 is the
highest priority. Prior to V4.0 of the S7-1200 CPU, each type of OB belonged to a fixed
priority class (1 to 26). From V4.0 forward, you can assign a priority class to each OB that
you configure. You configure the priority number in the attributes of the OB properties.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 105

PLC concepfts

5.1 Execution of the user program

Interruptible and non-interruptible execution modes

106

OBs|(Page | 92) execute in priority order of the events that trigger them. In the Startup
properties of the device configuration of the CPU (Page|170), you can configure OB
execution to be interruptible or non-interruptible. Note that program cycle OBs are always
interruptible, but you can configure all other OBs to be either interruptible or non-
interruptible.

If you set interruptible mode, then if an OB is executing and a higher priority event occurs
before the OB completes its execution, the running OB is interrupted to allow the higher-
priority event OB to run. The higher-priority event runs, and at its completion, the OB that
was interrupted continues. When multiple events occur while an interruptible OB is
executing, the CPU processes those events in priority order.

If you do not set interruptible mode, then an OB runs to completion when triggered
regardless of any other events that trigger during the time that it is running.

Consider the following two cases where interrupt events trigger a cyclic OB and a time delay
OB. In both cases, the time delay OB (OB201) has no|process image partition assignment
(Page 83) and executes at priority 4. The cyclic OB (OB200) has a process image partition
assignment of PIP1 and executes at priority 2. The following illustrations show the difference
in execution between non-interruptible and interruptible execution modes:

execute OB201

read PIP1 execute OB200 write PIP1
write PIPO read PIPO execute OB1 execute OB1 (continued)
Time |:'|> cyclic interval delay timer
elapsed expired

Figure 5-1 Case 1: Non-interruptible OB execution

execute OB201

read PIP1 execute OB200 execute OB200 (continued) write PIP1
write PIPO read PIPO execute OB1 execute OB1 (continued)
Time ::> cyclic interval delay timer
elapsed expired

Figure 5-2 Case 2: Interruptible OB execution

Note

If you configure the OB execution mode to be non-interruptible, then a time error OB cannot
interrupt OBs other than program cycle OBs. Prior to V4.0 of the S7-1200 CPU, a time error
OB could interrupt any executing OB. From V4.0 forward, you must configure OB execution
to be interruptible if you want a time error OB (or any other higher priority OB) to be able to
interrupt executing OBs that are not program cycle OBs.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.1 Execution of the user program

Understanding event execution priorities and queuing

The CPU limits the number of pending (queued) events from a single source, using a
different queue for each event type. Upon reaching the limit of pending events for a given
event type, the next event is lost. You can use a/time error interrupt OB (Page 96) to
respond to queue overflows.

Note that STEP 7 allows you

to configure some specific [General |
event queueing parameters ... Prionitynumber: | 9
for the Cyclic interrupt OB Information

‘& Properties '1, Info . ‘r_. Jll)iagmmtirs |

and the Time of day OB. b o EvN i
Compilation
Protection Events 1o be queved 1

Atributes
Cyclic interrupt

[Report event overlow into disgnestic buffer
& Enable time error

[Event threshold for tme eror | 1

For further information on CPU overload behavior and event queueing, refer to the STEP 7
Information System.

Each CPU event has an associated priority. In general, the CPU services events in order of
priority (highest priority first). The CPU services events of the same priority on a "first-come,
first-served" basis.

Table 5- 16 OB events

Event Quantity allowed Default OB priority
Program cycle 1 program cycle event 14
Multiple OBs allowed
Startup 1 startup event 14
Multiple OBs allowed
Time delay Up to 4 time events 3
1 OB per event
Cyclic interrupt Up to 4 events 8
1 OB per event
Hardware interrupt Up to 50 hardware interrupt events? 18
1 OB per event, but you can use the same OB for 18
multiple events
Time error 1 event (only if configured)? 22 or 264
Diagnostic error 1 event (only if configured) 5
Pull or plug of modules | 1 event 6
Rack or station failure 1 event 6
Time of day Up to 2 events 2
Status 1 event 4
Update 1 event 4
Profile 1 event 4

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 107

PLC concepfts

5.1 Execution of the user program

Interrupt latency

108

Event Quantity allowed Default OB priority
MC-Servo 1 event 25
MC-Interpolator 1 event 24

T The startup event and the program cycle event never occur at the same time because the startup
event runs to completion before the program cycle event starts.

2 You can have more than 50 hardware interrupt event OBs if you use the DETACH and ATTACH

instructions.

3 You can configure the CPU to stay in RUN if the scan cycle exceeds the maximum scan cycle time
or you can use the RE_TRIGR instruction to reset the cycle time. However, the CPU goes to
STOP mode the second time that one scan cycle exceeds the maximum scan cycle time.

4 The priority for a new V4.0 or V4.1 CPU is 22. If you exchange a V3.0 CPU for a V4.0 or V4.1
CPU, the priority is 26: the priority that was in effect for V3.0. In either case, the priority field is ed-
itable and you can set the priority to any value in the range 22 to 26.

Refer to the topic "Exchanging a V3.0 CPU for a V4.1 CPU|(Page|1571)" for more details.

In addition, the CPU recognizes other events that do not have associated OBs. The following
table describes these events and the corresponding CPU actions:

Table 5- 17 Additional events

Event

Description

CPU action

1/0 access error

Direct 1/0 read/write error

The CPU logs the first occurrence in the
diagnostic buffer and stays in RUN mode.
You can access the error cause using the
GET_ERROR_ID (Page|311) instruction.

Max cycle time error

CPU exceeds the configured
cycle time twice

The CPU logs the error in the diagnostic
buffer and transitions to STOP mode.

Peripheral access error

I/O error during process im-
age update

The CPU logs the first occurrence in the
diagnostic buffer and stays in RUN mode.

Programming error

program execution error

o If block-local error handling is enabled,
the system enters an error cause in the
error structure. You can access the er-
ror cause using the GET_ERROR_ID
(Page 311) instruction.

e If global error handling is enabled, the
system enters an access error start
event into the diagnostic buffer and
stays in RUN mode.

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is

approximately 175 usec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

5.1.4 Monitoring and configuring the cycle time

The cycle time is the time that the CPU operating system requires to execute the cyclic
phase of the RUN mode. The CPU provides two methods of monitoring the cycle time:

® Maximum scan cycle time
® Minimum scan cycle time

Scan cycle monitoring begins after the startup event is complete. Configuration for this
feature appears under the "Device Configuration" for the CPU under "Cycle time".

The CPU always monitors the scan cycle and reacts if the maximum scan cycle time is
exceeded. If the configured maximum scan cycle time is exceeded, an error is generated
and is handled one of two ways:

® [f the user program does not include a time error interrupt OB, then the timer error event
generates a diagnostic buffer entry, but the CPU remains in RUN mode. (You can change
the configuration of the CPU to go to STOP mode when it detects a time error, but the
default configuration is to remain in RUN mode.)

® [f the user program includes a time error interrupt OB, then the CPU executes it.

The RE_TRIGR instruction (Page|309) (re-trigger cycle time monitoring) allows you to reset
the timer that measures the cycle time. If the elapsed time for the current program cycle
execution is less than ten times the configured maximum scan cycle time, the RE_TRIGR
instruction retriggers the cycle time monitoring and returns with ENO = TRUE. If not, the
RE_TRIGR instruction does not retrigger the cycle time monitoring. It returns ENO = FALSE.

Typically, the scan cycle executes as fast as it can be executed and the next scan cycle
begins as soon as the current one completes. Depending upon the user program and
communication tasks, the time period for a scan cycle can vary from scan to scan. To
eliminate this variation, the CPU supports an optional minimum scan cycle time. If you
enable this optional feature and provide a minimum scan cycle time in ms, then the CPU
delays after the execution of the program cycle OBs until the minimum scan cycle time
elapses before repeating the program cycle.

In the event that the CPU completes the normal scan cycle in less time than the specified
minimum cycle time, the CPU spends the additional time of the scan cycle performing
runtime diagnostics and/or processing communication requests.

In the event that the CPU does not complete the scan cycle in the specified minimum cycle
time, the CPU completes the scan normally (including communication processing) and does
not create any system reaction as a result of exceeding the minimum scan time. The
following table defines the ranges and defaults for the cycle time monitoring functions:

Table 5- 18 Range for the cycle time

Cycle time Range (ms) Default
Maximum scan cycle time’ 1 to 6000 150 ms
Minimum scan cycle time? 1 to maximum scan cycle time Disabled

1 The maximum scan cycle time is always enabled. Configure a cycle time between 1 ms to 6000
ms. The default is 150 ms.

2 The minimum scan cycle time is optional, and is disabled by default. If required, configure a cycle
time between 1 ms and the maximum scan cycle time.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 109

PLC concepfts

5.1 Execution of the user program

Configuring the cycle time and communication load

You use the CPU properties in the Device configuration to configure the following
parameters:

e Cycle: You can enter a maximum scan cycle monitoring time. You can also enable and
enter a minimum scan cycle time.

Cycle

Scan cycle monitoring time: | 150 s

["] Enable minimum cycle time for cyclic 0Bs

s

e Communication load: You can configure a percentage of the time to be dedicated for
communication tasks.

Communication load

Qycle load due ta communication: 20 %

For more information about the scan cycle, see "Monitoring the cycle time".|(Page|109)

5.1.5 CPU memory

Memory management

The CPU provides the following memory areas to store the user program, data, and
configuration:

® | oad memory is non-volatile storage for the user program, data and configuration. When
you download a project to the CPU, the CPU first stores the program in the Load memory
area. This area is located either in a memory card (if present) or in the CPU. The CPU
maintains this non-volatile memory area through a power loss. The memory card
supports a larger storage space than that built-in to the CPU.

® Work memory is volatile storage for some elements of the user project while executing
the user program. The CPU copies some elements of the project from load memory into
work memory. This volatile area is lost when power is removed, and is restored by the
CPU when power is restored.

® Retentive memory is non-volatile storage for a limited quantity of work memory values.
The CPU uses the retentive memory area to store the values of selected user memory
locations during power loss. When a power down or power loss occurs, the CPU restores
these retentive values upon power up.

To display the memory usage for a compiled program block, right-click the block in the
"Program blocks" folder in the STEP 7 project tree and select "Resources" from the context
menu. The Compiliation properties display the load memory and work memory for the
compiled block.

To display the memory usage for the online CPU, double-click "Online and diagnostics" in
STEP 7, expand "Diagnostics", and select "Memory".

S7-1200 Programmable controller
110 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

Retentive memory

You can avoid data loss after power failure by marking certain data as retentive. The CPU
allows you to configure the following data as retentive:

e Bit memory (M): You can define the size of retentive memory for bit memory in the PLC
tag table or in the assignment list. Retentive bit memory always starts at MBO and runs
consecutively up through a specified number of bytes. Specify this value from the PLC
tag table or in the assignment list by clicking the "Retain" toolbar icon. Enter the number
of M bytes to retain starting at MBO.

Note: For any block, you can display the assignment list by selecting a block in the
Program Blocks folder and then selecting he Tools > Assignment list menu command.

e Tags of a function block (FB): If an FB is of type "Optimized block access", then the
interface editor for this FB includes a "Retain" column. In this column, you can select
either "Retain”, "Non-retain", or "Set in IDB" individually for each tag. When you place
such an FB in the program, the instance DB that corresponds to the FB includes this
"Retain" column as well. You can only change the retentive state of a tag from within the
instance DB interface editor if you selected "Set in IDB" (Set in instance data block) in the
Retain selection for the tag in the optimized FB.

If an FB is not of type "Optimized block access", then the interface editor for this FB does
not include a "Retain" column. When you place such an FB in the program, the instance
DB that corresponds to the FB does, however, include a "Retain" column that is available
for edit. In this case, selecting the "Retain" option for any tag results in the selection of all
tags. Similarly, deselecting the option for any tag results in the deselection of all tags.

To view or modify whether an FB is optimized, open the properties of the FB and select
the attributes.

e Tags of a global data block: The behavior of a global DB with regard to retentive state
assignment is similar to that of an FB. Depending on the block access setting you can
define the retentive state either for individual tags or for all tags of a global data block.

— If you select "Optimized" when you create the DB, you can set the retentive state for
each individual tag.

— If you select "Standard - compatible with S7-300/400" when you create the DB, the
retentive-state setting applies to all tags of the DB; either all tags are retentive or no
tag is retentive.

The CPU supports a total of 10240 bytes of retentive data. To see how much is available,
from the PLC tag table or the assignment list, click the "Retain" toolbar icon. Although this is
where the retentive range is specified for M memory, the second row indicates the total
remaining memory available for M and DB combined. Note that for this value to be accurate,
you must compile all data blocks with retentive tags.

Note

Downloading a program does not clear or make any changes to existing values in retentive
memory. If you want to clear retentive memory before a download, then reset your CPU to
factory settings prior to downloading the program.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 111

PLC concepfts

5.1 Execution of the user program

5.1.5.1 System and clock memory

You use the CPU properties to enable bytes for "system memory" and "clock memory". Your
program logic can reference the individual bits of these functions by their tag names.

® You can assign one byte in M memory for system memory. The byte of system memory
provides the following four bits that can be referenced by your user program by the
following tag names:

— First cycle: (Tag name "FirstScan") bit is set to1 for the duration of the first scan after
the startup OB finishes. (After the execution of the first scan, the "first scan" bit is set
to 0.)

— Diagnostics status changed: (Tag name: "DiagStatusUpdate") is set to 1 for one scan
after the CPU logs a diagnostic event. Because the CPU does not set the
"DiagStatusUpdate" bit until the end of the first execution of the program cycle OBs,
your user program cannot detect if there has been a diagnostic change either during
the execution of the startup OBs or the first execution of the program cycle OBs.

— Always 1 (high): (Tag name "AlwaysTRUE") bit is always set to 1.
— Always 0 (low): (Tag name "AlwaysFALSE") bit is always set to 0.

® You can assign one byte in M memory for clock memory. Each bit of the byte configured
as clock memory generates a square wave pulse. The byte of clock memory provides 8
different frequencies, from 0.5 Hz (slow) to 10 Hz (fast). You can use these bits as control
bits, especially when combined with edge instructions, to trigger actions in the user
program on a cyclic basis.

The CPU initializes these bytes on the transition from STOP mode to STARTUP mode. The
bits of the clock memory change synchronously to the CPU clock throughout the STARTUP
and RUN modes.

A\ caution

Risks with overwriting the system memory or clock memory bits

Overwriting the system memory or clock memory bits can corrupt the data in these
functions and cause your user program to operate incorrectly, which can cause damage to
equipment and injury to personnel.

Because both the clock memory and system memory are unreserved in M memory,
instructions or communications can write to these locations and corrupt the data.

Avoid writing data to these locations to ensure the proper operation of these functions, and
always implement an emergency stop circuit for your process or machine.

S7-1200 Programmable controller
112 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

System memory configures a byte with bits that turn on (value = 1) for a specific event.

System memory bits

Address of system memaory

[Enable the use of system memory byte

byt (WEx): |'| |
First cycle |%I-.I'I {0 (FirstScan) |
Diagnastics status changed |%I-.I'I 1 (DiagStatusUpdate) |
Elways 1 (highy |%I-.I'I 2 (AlwaysTRUE) |
Always O (lowd [%M1.3 (AlwaysFALSE) |

Table 5- 19 System memory

e 0: No change

7 | 6 | 5 | 4 3 2 1 0

Reserved Always off | Always on | Diagnostic status indica- | First scan indicator

Value 0 Value 0 Value 1 tor e 1: First scan after
e 1:Change startup

e 0: Not first scan

Clock memory configures a byte that cycles the individual bits on and off at fixed intervals.
Each clock bit generates a square wave pulse on the corresponding M memory bit. These
bits can be used as control bits, especially when combined with edge instructions, to trigger
actions in the user code on a cyclic basis.

Clock memory bits

Address of clock memary byte

@;Enable the use of clock memary byte

Mg |0 |
| 0 Hz clack |%I-.IIII.III (Clock_10Hz) |
S Hzelock: [2%M0O.1 (Clack_5Hz) |
2 5 Hz clock |%I-.IIII.3 (Clock_2.5Hz) |
2 Hzelock: [3M0.3 (Clack_2Hz) |
| .25 Hz clacl |%I-.IIII.4 (Clock_1.25Hz) |
| Hzclock: [%M0.5 (Clock_1Hz) |
0625 Hz clock |%I-.IIII.-3 (Clack_0.625Hz) |
0.5 Hz clock |%I-.IIII..T (Clock_0.5Hz) |
Table 5- 20 Clock memory
Bit number 7 6 5 4 3 2 1 0
Tag name
Period (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1
Frequency (Hz) 0.5 0.625 |1 1.25 2 25 5 10

Because clock memory runs asynchronously to the CPU cycle, the status of the clock memory can
change several times during a long cycle.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

113

PLC concepfts

5.1 Execution of the user program

5.1.6

Diagnostics buffer

The CPU supports a diagnostics buffer that contains an entry for each diagnostic event.
Each entry includes a date and time the event occurred, an event category, and an event
description. The entries are displayed in chronological order with the most recent event at
the top. Up to 50 most recent events are available in this log. When the log is full, a new
event replaces the oldest event in the log. When power is lost, the events are saved.

The following types of events are recorded in the diagnostics buffer:
® Each system diagnostic event; for example, CPU errors and module errors

® Each state change of the CPU (each power up, each transition to STOP, each transition
to RUN)

To access the diagnostics buffer (Page 1322), you must be online. From the "Online &
diagnostics" view, locate the diagnostics buffer under "Diagnostics > Diagnostics buffer".

Reducing the number of security diagnostic events

114

Some security events generate repeated entries in the diagnostics buffer. These messages
can fill up the diagnostics buffer and potentially obscure other event messages. You can
configure the PLC to limit the number of diagnostic messages from security events. You
make selections in the device configuration of the CPU based on the time interval in which
you want to suppress recurring messages:

G Properties i‘i_., Info | _El:!_Dl.dL]IILIS!iL‘;

General | I0tags | Systemconstants | Texts
Userinterface languages - Security event
Time of day
~ Protection 2 .
" [Summanze securiy events in case of high
Connection mecha nisms message volume
e =p Length of an interval: | 20

Configuratton control

c |secu::u-. -
Connection resources -]

If you choose to summarize security events within a time interval, you have the choice of
setting a time interval in seconds, minutes, or hours, and a numerical value in the range 1 ..
255,

If you choose to restrict security events, you will be restricting these types of events:
® Going online with the correct or incorrect password

® Manipulated communications data detected

® Manipulated data detected on memory card

® Manipulated firmware update file detected

® Changed protection level (access protection) downloaded to the CPU

® Password legitimization restricted or enabled (by instruction or CPU display)

® Online access denied due to the possible number of simultaneous access attempts being
exceeded

e Timeout when an existing online connection is inactive

® | ogging in to the Web server with the correct or incorrect password

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.1 Execution of the user program

® Creating a backup of the CPU

e Restoring the CPU configuration

51.7 Time of day clock

The CPU supports a time-of-day clock. A super-capacitor supplies the energy required to
keep the clock running during times when the CPU is powered down. The super-capacitor
charges while the CPU has power. After the CPU has been powered up at least 24 hours,
then the super-capacitor has sufficient charge to keep the clock running for typically 20 days.

STEP 7 sets the time-of-day clock to system time, which has a default value out of the box or
following a factory reset. To utilize the time-of-day clock, you must set it. Timestamps such
as those for diagnostic buffer entries, data log files, and data log entries are based on the
system time. You set the time of day from the "Set time of day" function|(Page|1316) in the
"Online & diagnostics" view of the online CPU. STEP 7 then calculates the system time from
the time you set plus or minus the Windows operating system offset from UTC (Coordinated
Universal Time). Setting the time of day to the current local time produces a system time of
UTC if your Windows operating system settings for time zone and daylight savings time
correspond to your locale.

STEP 7 includes|instructions (Page|338) to read and write the system time (RD_SYS_T and
WR_SYS_T), to read the local time (RD_LOC_T), and to set the time zone
(SET_TIMEZONE). The RD_LOC_T instruction calculates local time using the time zone and
daylight saving time offsets that you set in the "Time of day" configuration in the|general
properties of the CPU|(Page 170). These settings enable you to set your time zone for local
time, optionally enable daylight saving time, and specify the start and end dates and times
for daylight saving time. You can also use the SET_TIMEZONE instructions to configure
these settings.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 115

PLC concepfts

5.1 Execution of the user program

5.1.8 Configuring the outputs on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs when the CPU is in STOP
mode. For any output of a CPU, SB or SM, you can set the outputs to either freeze the value
or use a substitute value:

® Substituting a specified output value (default): You enter a substitute value for each
output (channel) of that CPU, SB, or SM device.

The default substitute value for digital output channels is OFF, and the default substitute
value for analog output channels is 0.

® Freezing the outputs to remain in last state: The outputs retain their current value at the
time of the transition from RUN to STOP. After power up, the outputs are set to the
default substitute value.

You configure the behavior of the outputs in Device Configuration. Select the individual
devices and use the "Properties" tab to configure the outputs for each device.

Note

Some distibuted I/O modules offer additional settings for the reaction to CPU stop mode.
Select from the list of choices in Device Configuration for those modules.

When the CPU changes from RUN to STOP, the CPU retains the process image and writes
the appropriate values for both the digital and analog outputs, based upon the configuration.

S7-1200 Programmable controller
116 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.2 Data storage, memory areas, I/O and addressing

5.2 Data storage, memory areas, 1/0 and addressing

5.21 Accessing the data of the S7-1200

STEP 7 facilitates symbolic programming. You create symbolic names or "tags" for the
addresses of the data, whether as PLC tags relating to memory addresses and 1/O points or
as local variables used within a code block. To use these tags in your user program, simply
enter the tag name for the instruction parameter.

For a better understanding of how the CPU structures and addresses the memory areas, the
following paragraphs explain the "absolute" addressing that is referenced by the PLC tags.
The CPU provides several options for storing data during the execution of the user program:

® Global memory: The CPU provides a variety of specialized memory areas, including
inputs (1), outputs (Q) and bit memory (M). This memory is accessible by all code blocks
without restriction.

e PLC tag table: You can enter symbolic names in the STEP 7 PLC tag table for specific
memory locations. These tags are global to the STEP 7 program and allow programming
with names that are meaningful for your application.

e Data block (DB): You can include DBs in your user program to store data for the code
blocks. The data stored persists when the execution of the associated code block comes
to an end. A "global" DB stores data that can be used by all code blocks, while an
instance DB stores data for a specific FB and is structured by the parameters for the FB.

¢ Temp memory: Whenever a code block is called, the operating system of the CPU
allocates the temporary, or local, memory (L) to be used during the execution of the
block. When the execution of the code block finishes, the CPU reallocates the local
memory for the execution of other code blocks.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 117

PLC concepfts
5.2 Data storage, memory areas, I/O and addressing

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. References to the input (I) or
output (Q) memory areas, such as 10.3 or Q1.7, access the process image. To immediately
access the physical input or output, append the reference with ":P" (such as 10.3:P, Q1.7:P,
or "Stop:P").

Table 5-21 Memory areas

Memory area Description Force Retentive
| Copied from physical inputs at the beginning of No No
Process image input the scan cycle

I_:P1 Immediate read of the physical input points on Yes No
(Physical input) the CPU, SB, and SM

Q Copied to physical outputs at the beginning of No No
Process image output the scan cycle

QP Immediate write to the physical output points Yes No
(Physical output) on the CPU, SB, and SM

M Control and data memory No Yes
Bit memory (optional)
L Temporary data for a block local to that block No No
Temp memory

DB Data memory and also parameter memory for No Yes
Data block FBs (optional)

1 To immediately access (read or write) the physical inputs and physical outputs, append a ":P" to
the address or tag (such as 10.3:P, Q1.7:P, or "Stop:P").

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. The absolute address consists
of the following elements:

® Memory area identifier (such as I, Q, or M)
® Size of the data to be accessed ("B' for Byte, "W" for Word, or "D" for DWord)
e Starting address of the data (such as byte 3 or word 3)

S7-1200 Programmable controller
118 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.2 Data storage, memory areas, I/O and addressing

When accessing a bit in the address for a Boolean value, you do not enter a mnemonic for
the size. You enter only the memory area, the byte location, and the bit location for the data
(such as 10.0, Q0.1, or M3.4).

M3 .4
® ©0®
0
1
2
3 ®
4
5)
7 6 5 4 3 2 10
®
A Memory area identifier E Bytes of the memory area
B Byte address: byte 3 F Bits of the selected byte
C Separator ("byte.bit")

D Bit location of the byte (bit 4 of 8)

In the example, the memory area and byte address (M = bit memory area, and 3 = Byte 3)
are followed by a period (".") to separate the bit address (bit 4).

Accessing the data in the memory areas of the CPU

STEP 7 facilitates symbolic programming. Typically, you create tags either in the PLC tag
table, a data block, or in the interface of an OB, FC, or FB. These tags include a name, data
type, offset, and comment. Additionally, in a data block, you can specify a start value. You
can use these tags when programming by entering the tag name at the instruction
parameter. Optionally you can enter the absolute operand (memory area, size and offset) at
the instruction parameter. The examples in the following sections show how to enter
absolute operands. The % character is inserted automatically in front of the absolute
operand by the program editor. You can toggle the view in the program editor to one of
these: symbolic, symbolic and absolute, or absolute.

| (process image input): The CPU samples the peripheral (physical) input points just prior to
the cyclic OB execution of each scan cycle and writes these values to the input process
image. You can access the input process image as bits, bytes, words, or double words. Both
read and write access is permitted, but typically, process image inputs are only read.

Table 5- 22 Absolute addressing for | memory

Bit I[byte address].[bit address] 10.1
Byte, Word, or Double Word I[size][starting byte address] B4, IW5, or ID12

By appending a ":P" to the address, you can immediately read the digital and analog inputs
of the CPU, SB, SM or distributed module. The difference between an access using I_:P
instead of | is that the data comes directly from the points being accessed rather than from
the input process image. This |_:P access is referred to as an "immediate read" access
because the data is retrieved immediately from the source instead of from a copy that was
made the last time the input process image was updated.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 119

PLC concepfts

5.2 Data storage, memory areas, I/O and addressing

120

Because the physical input points receive their values directly from the field devices
connected to these points, writing to these points is prohibited. That is, |_:P accesses are
read-only, as opposed to | accesses which can be read or write.

I_:P accesses are also restricted to the size of inputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the inputs of a 2 DI / 2 DQ SB are configured
to start at 14.0, then the input points can be accessed as 14.0:P and |14.1:P or as |1B4:P.
Accesses to 14.2:P through 14.7:P are not rejected, but make no sense since these points are
not used. Accesses to IW4:P and ID4:P are prohibited since they exceed the byte offset
associated with the SB.

Accesses using |_:P do not affect the corresponding value stored in the input process image.

Table 5- 23 Absolute addressing for | memory (immediate)

Bit I[byte address].[bit address]:P 10.1:P

Byte, Word, or Double word I[size][starting byte address]:P IB4:P, IW5:P, or ID12:P

Q (process image output): The CPU copies the values stored in the output process image to
the physical output points. You can access the output process image in bits, bytes, words, or
double words. Both read and write access is permitted for process image outputs.

Table 5- 24 Absolute addressing for Q memory

Bit Q[byte address].[bit address] Q1.1
Byte, Word, or Double word Q[size][starting byte address] QB5, QW10, QD40

By appending a ":P" to the address, you can immediately write to the physical digital and
analog outputs of the CPU, SB, SM or distributed module. The difference between an access
using Q_:P instead of Q is that the data goes directly to the points being accessed in addition
to the output process image (writes to both places). This Q_:P access is sometimes referred
to as an "immediate write" access because the data is sent immediately to the target point;
the target point does not have to wait for the next update from the output process image.

Because the physical output points directly control field devices that are connected to these
points, reading from these points is prohibited. That is, Q_:P accesses are write-only, as
opposed to Q accesses which can be read or write.

Q_:P accesses are also restricted to the size of outputs supported by a single CPU, SB, or
SM, rounded up to the nearest byte. For example, if the outputs of a 2 DI/ 2 DQ SB are
configured to start at Q4.0, then the output points can be accessed as Q4.0:P and Q4.1:P or
as QB4:P. Accesses to Q4.2:P through Q4.7:P are not rejected, but make no sense since
these points are not used. Accesses to QW4:P and QD4:P are prohibited since they exceed
the byte offset associated with the SB.

Accesses using Q_:P affect both the physical output as well as the corresponding value
stored in the output process image.

Table 5- 25 Absolute addressing for Q memory (immediate)

Bit Q[byte address].[bit address]:P Q1.1:P
Byte, Word, or Double word Qfsize][starting byte address]:P QB5:P, QW10:P or QD40:P

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.2 Data storage, memory areas, I/O and addressing

M (bit memory area): Use the bit memory area (M memory) for both control relays and data
to store the intermediate status of an operation or other control information. You can access
the bit memory area in bits, bytes, words, or double words. Both read and write access is
permitted for M memory.

Table 5- 26 Absolute addressing for M memory

Bit M[byte address].[bit address] M26.7
Byte, Word, or Double Word M[size][starting byte address] MB20, MW30, MD50

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis.
The CPU allocates the temp memory for the code block and initializes the memory locations
to 0 at the time when it starts the code block (for an OB) or calls the code block (for an FC or
FB).

Temp memory is similar to M memory with one major exception: M memory has a "global"
scope, and temp memory has a "local" scope:

® M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data
is available globally for all of the elements of the user program.

e Temp memory: The CPU restricts access to the data in temp memory to the OB, FC, or
FB that created or declared the temp memory location. Temp memory locations remain
local and different code blocks do not share temp memory, even when the code block
calls another code block. For example: When an OB calls an FC, the FC cannot access
the temp memory of the OB that called it.

The CPU provides temp (local) memory for each OB priority level:

® 16 Kbytes for startup and program cycle, including associated FBs and FCs

e 6 Kbytes for each additional interrupt event thread, including associated FBs and FCs
You access temp memory by symbolic addressing only.

You can find out the amount of temp (local) memory that the blocks in your program use
through the call structure in STEP 7. From the project tree select Program info and then
select the Call structure tab. You will see all of the OBs in your program and you can drill
down to see the blocks that they call. For each block, you can see the local data allocation.
You can also access the Call structure display from the STEP 7 Tools > Call structure menu
command.

DB (data block): Use the DB memory for storing various types of data, including intermediate
status of an operation or other control information parameters for FBs, and data structures
required for many instructions such as timers and counters. You can access data block
memory in bits, bytes, words, or double words. Both read and write access is permitted for
read/write data blocks. Only read access is permitted for read-only data blocks.

Table 5- 27 Absolute addressing for DB memory

Bit DBJ[data block number].DBX[byte ad- DB1.DBX2.3
dress].[bit address]

Byte, Word, or Double DBJ[data block number].DB [size][starting | DB1.DBB4, DB10.DBW2,
Word byte address] DB20.DBD8

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 121

PLC concepfts

5.2 Data storage, memory areas, I/O and addressing

Note

When you specify an absolute address in LAD or FBD, STEP 7 precedes this address with a
"%" character to indicate that it is an absolute address. While programming, you can enter
an absolute address either with or without the "%" character (for example %10.0 or 1.0). If
omitted, STEP 7 supplies the "%" character.

In SCL, you must enter the "%" before the address to indicate that it is an absolute address.
Without the "%", STEP 7 generates an undefined tag error at compile time

Configuring the 1/O in the CPU and I/O modules

122

[— When you add a CPU and 1/0O modules to your
device configuration, STEP 7 automatically assigns
| and Q addresses. You can change the default
addressing by selecting the address field in the
device configuration and entering new numbers.

e STEP 7 assigns digital inputs and outputs in
groups of 8 points (1 byte), whether the module
uses all the points or not.

e STEP 7 allocates analog inputs and outputs in

Device overdes

| e St addniss Qadde. Type orde groups of 2, where each analog poing occupies
e 2 bytes (16 bits).
RS485_1 1o O 12417 (RS4E5) BEST
= FC 1 CPU TN4C DODCT BEST

Di4D010 1.1 0. .1 D4D010
A2 12 6467 Mz
ADT x 1261 13 1. 81 ADY signal board BEST
HEC_1 116 1000 High speed county
HSC.2 137 High spead county
HSC_3 1.18 High spead counts
HSC 4 139 High speed counti
HEC.S 120 High speed counts
HSC 6 1.2 High spead courti
Fulsa_1 132 Pulse genarator (P
Pulse 2 133 Pulre genarstor (F

» FROFINET L. X FROFINET intorfacs

D 2VDC. 2 8 S8 1221 DEB 2%, GEST

The figure shows an example of a CPU 1214C with two SMs and one SB. In this example,
you could change the address of the DI8 module to 2 instead of 8. The tool assists you by
changing address ranges that are the wrong size or conflict with other addresses.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.3 Processing of analog values

Processing of analog values

Analog signal modules provide input signals or expect output values that represent either a
voltage range or a current range. These ranges are +10V, 5V, +2.5V, or 0 - 20 mA. The
values returned by the modules are integer values where 0 to 27648 represents the rated
range for current, and -27648 to 27648 for voltage. Anything outside the range represents
either an overflow or underflow. See the tables for/analog input representation|(Page|1471)
and|analog output representation (Page|1472) for details about the types of out-of-range
values.

In your control program, you probably need to use these values in engineering units, for
example to represent a volume, temperature, weight or other quantitative value. To do this
for an analog input, you must first normalize the analog value to a real (floating point) value
from 0.0 to 1.0. Then you must scale it to the minimum and maximum values of the
engineering units that it represents. For values that are in engineering units that you need to
convert to an analog output value, you first normalize the value in engineering units to a
value between 0.0 and 1.0, and then scale it between 0 and 27648 or -27648 to 27648,
depending on the range of the analog module. STEP 7 provides the NORM_X and SCALE_X
instructions (Page 296) for this purpose. You can also use the| CALCULATE instruction
(Page|255) to scale the|analog values (Page|42).

Example: analog value processing

Consider, for example, an analog input that has a current range of 0 - 20 mA. The analog
input module returns values in the range 0 to 24768 for measured values. For this example,
consider that you are using this analog input value to measure a temperature range from
50 °C to 100 °C. A few sample values would have the following meanings:

Analog input value Engineering units
0 50 °C

6192 62.5 °C

12384 75 °C

18576 87.5°C

24768 100 °C

The calculation for determining engineering units from the analog input value in this example
is as follows:

Engineering units value = 50 + (Analog input value) * (100 - 50) / (24768 - 0)

For the general case, the equation would be:

Englineering units value = (Low range of engineering units) +
(Analog input value) *
(High range of engineering units - Low range of engineering units) /
(Maximum analog input range - Minimum analog input range)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 123

PLC concepfts

5.3 Processing of analog values

124

In PLC applications, the typical method is to normalize the analog input value to a floating
point value between 0.0 and 1.0. Then, you would scale the resulting value to a floating point
value in the range of your engineering units. For simplicity, the following LAD instructions
use constant values for the ranges; you might actually choose to use tags:

Network 1
MORM_X
"Tag_1" Int to Real "Tag_2"
] |
{ | EN - { }
0]] "MNaorrnalized_
"Al_in" WALUE ouUT — value”
24768 A
Network 2
SCALE X
"Tag_2" Real to Real *Tag_3"
11
{ | EN { }
50.0 MM ouT "Scaled_value”
"Mormalized_
value” — VALUE
100.0 AX

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.4 Data types

5.4 Data types

Data types are used to specify both the size of a data element as well as how the data are to
be interpreted. Each instruction parameter supports at least one data type, and some
parameters support multiple data types. Hold the cursor over the parameter field of an
instruction to see which data types are supported for a given parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be
used by that instruction (example: the IN1 input of an ADD instruction). An actual parameter
is the memory location (preceded by a "%" character) or constant containing the data to be
used by the instruction (example %MD400 "Number_of _Widgets"). The data type of the
actual parameter specified by you must match one of the supported data types of the formal
parameter specified by the instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute
(direct) memory address. Tags associate a symbolic name (tag name) with a data type,
memory area, memory offset, and comment, and can be created either in the PLC tags
editor or in the Interface editor for a block (OB, FC, FB and DB). If you enter an absolute
address that has no associated tag, you must use an appropriate size that matches a
supported data type, and a default tag will be created upon entry.

All data types except String, Struct, Array, and DTL are available in the PLC tags editor and
the block Interface editors. String, Struct, Array, and DTL are available only in the block
Interface editors. You can also enter a constant value for many of the input parameters.

e Bit and Bit sequences (Page|126): Bool (Boolean or bit value), Byte (8-bit byte value),
Word (16-bit value), DWord (32-bit double word value)

® Integer (Page 127)
— USInt (unsigned 8-bit integer), Sint (signed 8-bit integer),
— Ulnt (unsigned 16-bit integer), Int (signed 16-bit integer)
— UDInt (unsigned 32-bit integer), DInt (signed 32-bit integer)

® Floating-point Real (Page 127): Real (32-bit Real or floating-point value), LReal (64-bit
Real or floating-point value)

e Time and Date (Page 128): Time (32-bit IEC time value), Date (16-bit date value), TOD
(32-bit time-of-day value), DTL (12-byte date-and-time structure)

® Character and String|/(Page|130): Char (8-bit single character), String (variable-length
string of up to 254 characters)

® Array|(Page|132)

e Data structure|(Page 133): Struct
e PLC data type (Page 133)

e Variant data type (Page 134)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 125

PLC concepfts

5.4 Data types
Although not available as data types, the following BCD numeric format is supported by the
conversion instructions:
Table 5- 28 Size and range of the BCD format
Format | Size (bits) | Numeric Range Constant Entry Examples
BCD16 |16 -999 to 999 123, -123
BCD32 |32 -9999999 to 9999999 1234567, -1234567
5.4.1 Bool, Byte, Word, and DWord data types

Table 5- 29 Bit and bit sequence data types

Data Bit Number Number Constant Address
type size type range examples examples
Bool 1 Boolean FALSE or TRUE TRUE 11.0
Binary 2#0 or 2#1 240 Qo.1
. . M50.7
Unsigned integer |0 or 1 1 DB1.DBX2.3
Octal 8#0 or 8#1 8#1 Tag_name
Hexadecimal 16#0 or 16#1 16#1
Byte 8 Binary 2#0 to 2#1111_1111 2#1000_1001 1B2
Unsigned integer | 0 to 255 15 MB10
. - DB1.DBB4
Signed integer -128 to 127 -63 Tag_name
Octal 8#0 to 8#377 8#17
Hexadecimal B#16#0 to B#16#FF, 16#0 to B#16#F, 16#F
16#FF
Word 16 Binary 2#0 to 2#1111_1111_1111_1111 | 2#1101_0010_1001_0110 | MW10
Unsigned integer | 0 to 65535 61680 DB1.DBW2
. . Tag_name
Signed integer -32768 to 32767 72
Octal 8#0 to 8#177_777 8#170_362
Hexadecimal W#16#0 to W#16#FFFF, W#16#F1C0, 16#A67B
16#0 to 16#FFFF
DWord 32 Binary 2#0 to 2#1101_0100_1111_1110 | MD10
2#1111_1111_1111_1111_1111 | _1000_1100 DB1.DBD8
111111111111 Tag_name
Unsigned integer* | 0to 4_294_967_295 15_793_935
Signed integer* -2_147_483_648 to -400000
2_147_483_647
Octal 8#0 to 8#37_777_777_777 8#74_177_417
Hexadecimal DW#16#0000_0000 to DW#16#20_F30A,
DW#16#FFFF_FFFF, 16#B_01F6
16#0000_0000 to
16#FFFF_FFFF

* The underscore " " is a thousands separator to enhance readability for numbers greater than eight digits.

S7-1200 Programmable controller
126 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.4 Data types
5.4.2 Integer data types
Table 5- 30 Integer data types (U = unsigned, S = short, D= double)
Data Bit size | Number Range Constant examples Address
type examples
USint 8 0 to 255 78, 2#01001110 MBO, DB1.DBB4,
Sint 8 -128 to 127 +50, 16#50 Tag_name
Ulint 16 0 to 65,535 65295, 0 MW2, DB1.DBW2,
Int 16 -32,768 to 32,767 30000, +30000 Tag_name
UDInt 32 0 to 4,294,967,295 4042322160 MD6, DB1.DBDS,
Dint 32 -2,147,483,648 to 2,147,483,647 |-2131754992 Tag_name
543 Floating-point real data types

Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real),
or 64-bit double-precision numbers (LReal) as described in the ANSI/IEEE 754-1985
standard. Single-precision floating-point numbers are accurate up to 6 significant digits and
double-precision floating point numbers are accurate up to 15 significant digits. You can
specify a maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-point
constant to maintain precision.

Table 5- 31 Floating-point real data types (L=Long)

Data Bit size | Number range Constant Examples Address examples

type

Real 32 -3.402823e+38 to -1.175 495e-38, | 123.456, -3.4, 1.0e-5 MD100,
10, DB1.DBDS,
+1.175 495e-38 to Tag_name
+3.402823e+38

LReal 64 -1.7976931348623158e+308 to 12345.123456789e40, | DB_name.var_nam

-2.2250738585072014e-308,
*0,
+2.2250738585072014e-308 to
+1.7976931348623158e+308

1.2E+40

e
Rules:

e No direct ad-
dressing sup-
port

e Can be as-
signed in an
OB, FB, or FC
block interface
table

Calculations that involve a long series of values including very large and very small numbers
can produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6 (Real), or 15 (LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

127

PLC concepfts

5.4 Data types

5.4.4

Time

Date

TOD

128

Time and Date data types

Table 5- 32 Time and date data types

Data type Size Range Constant Entry Examples
Time 32 bits | T#-24d_20h_31m_23s_648ms to T#5m_30s
T#24d_20h_31m_23s_647ms T#1d_2h_15m_30s_45ms
Stored as: -2,147,483,648 ms to TIME#10d20h30m20s630ms
+2,147,483,647 ms 500n10000ms
10d20h30m20s630ms
Date 16 bits | D#1990-1-1 to D#2168-12-31 D#2009-12-31
DATE#2009-12-31
2009-12-31
Time_of_Day | 32 bits | TOD#0:0:0.0 to TOD#23:59:59.999 TOD#10:20:30.400
TIME_OF_DAY#10:20:30.400
23:10:1
DTL 12 Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-
(Date and | bytes | \Max : DTL#2262-04-11:23:47:16.854 775 | 20:30:20.250
Time Long) 807

TIME data is stored as a signed double integer interpreted as milliseconds. The editor format
can use information for day (d), hours (h), minutes (m), seconds (s) and milliseconds (ms).

It is not necessary to specify all units of time. For example T#5h10s and 500h are valid.

The combined value of all specified unit values cannot exceed the upper or lower limits in
milliseconds for the Time data type (-2,147,483,648 ms to +2,147,483,647 ms).

DATE data is stored as an unsigned integer value which is interpreted as the number of days
added to the base date 01/01/1990, to obtain the specified date. The editor format must
specify a year, month and day.

TOD (TIME_OF_DAY) data is stored as an unsigned double integer which is interpreted as
the number of milliseconds since midnight for the specified time of day (Midnight = 0 ms).
The hour (24hr/day), minute, and second must be specified. The fractional second
specification is optional.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.4 Data types

DTL

DTL (Date and Time Long) data type uses a12 byte structure that saves information on date
and time. You can define DTL data in either the Temp memory of a block or in a DB. A value
for all components must be entered in the "Start value" column of the DB editor.

Table 5- 33 Size and range for DTL

Length | Format Value range Example of value

(bytes) input

12 Clock and calendar Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-
Year-Month- Max.: DTL#2554-12-31-23:59:59.999 999 | 20:30:20.250
Day:Hour:Minute: 999
Second.Nanoseconds

Each component of the DTL contains a different data type and range of values. The data
type of a specified value must match the data type of the corresponding components.

Table 5- 34 Elements of the DTL structure

Byte Component Data type Value range

0 Year UINT 1970 to 2554

1

2 Month USINT 1to 12

3 Day USINT 1to 31

4 Weekday USINT 1(Sunday) to 7(Saturday) !
5 Hour USINT 0to 23

6 Minute USINT 0to 59

7 Second USINT 0to 59

8 Nanoseconds UDINT 0 to 999 999 999
9

10

11

1 The format Year-Month-Day:Hour:Minute:
Second.Nanosecond does not include the weekday.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 129

PLC concepfts

5.4 Data types
5.4.5 Character and String data types
Table 5- 35 Character and String data types
Data type | Size Range Constant Entry Examples
Char 8 bits 16#00 to 16#FF ALY '@ 'E Y
WChar 16 bits 16#0000 to 16#FFFF AL, '@, 'a', 'Y, Asian characters, Cyrillic
characters, and others
String n+ 2 bytes | n=(0to 254 bytes) "ABC"
WString n+ 2 words | n = (0 to 65534 words) |"8123@XYZ.COM"
Char and WChar
A Char occupies one byte in memory and stores a single character coded in ASCII format,
including the extended ASCII character codes. A WChar occupies one word in memory and
can contain any double-byte character representation.
The editor syntax uses a single quote character before and after the character. You can use
visible characters and control characters.
String and WString

The CPU supports the String data type for storing a sequence of single-byte characters. The
String data type contains a total character count (hnumber of characters in the string) and the
current character count. The String type provides up to 256 bytes for storing the maximum
total character count (1 byte), the current character count (1 byte), and up to 254 bytes in the
string. Each byte in a String data type can be any value from 16#00 - 16#FF.

The WString data type provides for longer strings of one-word (double-byte) values. The first
word contains the maximum total character count; the next word contains the total character
count, and the following string can contain up to 65534 words. Each word in a WString data
type can be any value from 16#0000 - 16#FFFF.

You can use literal strings (constants) for instruction parameters of type IN using single
quotes. For example, ‘ABC’ is a three-character string that could be used as input for
parameter IN of the S_CONYV instruction. You can also create string variables by selecting
data type "String" or "WString" in the block interface editors for OB, FC, FB, and DB. You
cannot create a string in the PLC tags editor.

You can specify the maximum string size in bytes (String) or words (WString) by entering
square brackets after the keyword "String" or "WString" after you select one of those data
types from the data type drop-down list. For example, "MyString String[10]" would specify a
10-byte maximum size for MyString. If you do not include the square brackets with a
maximum size, then 254 is assumed for a string and 65534 for a WString. "MyWString
WString[1000]" would specify a 1000-word WString.

S7-1200 Programmable controller
130 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.4 Data types

The following example defines a String with maximum character count of 10 and current
character count of 3. This means the String currently contains 3 one-byte characters, but

could be expanded to contain up to 10 one-byte characters.

Table 5- 36 Example of a String data type

Total Charac- | Current Char- | Character 1 Character 2 Character 3 Character 10
ter Count acter Count
10 3 'C' (16#43) ‘A’ (16#41) 'T' (16#54) -
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 11

The following example defines a WString with maximum character count of 500 and current
character count of 300. This means the String currently contains 300 one-word characters,
but could be expanded to contain up to 500 one-word characters.

Table 5- 37 Example of a WString data type

Total Charac- | Current Char- | Character 1 Characters Character Character 500
ter Count acter Count 2 to 299 300
500 300 'a' (16#0084) | ASCII charac- | 'M' (16#004D) -
ter words
Word 0 Word 1 Word 2 Words 3 to Word 301 Word 501
300

ASCII control characters can be used in Char, Wchar, String and WString data. The

following table shows examples of control character syntax.

Table 5- 38 Valid ASCII control characters

Control char- ASCII Hex ASCII Hex Control function Examples
acters value (Char) | value (WChar)
$L or Sl 16#0A 16#000A Line feed '$LText', '$0AText'
$N or $n 16#0A and 16#000A and Line break '$NText',
16#0D 16#000D The new line shows two '$0A$0DText'
characters in the string.
$P or $p 16#0C 16#000C Form feed '$PText', '$0CText'
$R or $r 16#0D 16#000D Carriage return (CR) '$RText','$0DText'
$T or $t 16#09 16#0009 Tab '$TText', '$09Text'
$$ 16#24 16#0024 Dollar sign '100$$', '100$24'
$ 16#27 16#0027 Single quote "$Texty",'$27Text$
27

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK 131

PLC concepfts

5.4 Data types

5.4.6

Arrays

Array data type

You can create an array that contains multiple elements of the same data type. Arrays can
be created in the block interface editors for OB, FC, FB, and DB. You cannot create an array
in the PLC tags editor.

To create an array from the block interface editor, name the array and choose data type
"Array [lo .. hi] of type", then edit "lo", "hi", and "type" as follows:

® |o - the starting (lowest) index for your array
® hi - the ending (highest) index for your array

® type - one of the data types, such as BOOL, SINT, UDINT

Table 5- 39 ARRAY data type rules

Data Type Array syntax
ARRAY Name [index1_min..index1_max, index2_min..index2_max] of <data type>
e All array elements must be the same data type.
e The index can be negative, but the lower limit must be less than or equal to the upper limit.
e Arrays can have one to six dimensions.
e Multi-dimensional index min..max declarations are separated by comma characters.
e Nested arrays, or arrays of arrays, are not allowed.
e The memory size of an array = (size of one element * total number of elements in array)
Array index Valid index data types Array index rules
Constant or varia- | USInt, Sint, Ulnt, Int, UDInt, e Value limits: -32768 to +32767
ble Dint e Valid: Mixed constants and variables
e Valid: Constant expressions
e Not valid: Variable expressions
Example: array ARRAYT[1..20] of REAL One dimension, 20 elements
declarations ARRAY[-5..5] of INT One dimension, 11 elements
ARRAYT[1..2, 3..4] of CHAR Two dimensions, 4 elements
Example: array ARRAY1[0] ARRAY1 element 0
addresses ARRAY2[1,2] ARRAY?2 element [1,2]
ARRAY3][i,j] Ifi =3 and j=4, then ARRAY3 element
[3, 4] is addressed
S7-1200 Programmable controller
132 System Manual, V4.2, 09/2016, A5E02486680-AK

PLC concepfts
5.4 Data types

5.4.7 Data structure data type

You can use the data type "Struct" to define a structure of data consisting of other data
types. The struct data type can be used to handle a group of related process data as a single
data unit. A Struct data type is named and the internal data structure declared in the data
block editor or a block interface editor.

Arrays and structures can also be assembled into a larger structure. A structure can be
nested up to eight levels deep. For example, you can create a structure of structures that
contain arrays.

54.8 PLC data type

The PLC data type editor lets you define data structures that you can use multiple times in
your program. You create a PLC data type by opening the "PLC data types" branch of the
project tree and double-clicking the "Add new data type" item. On the newly created PLC
data type item, use two single-clicks to rename the default name and double-click to open
the PLC data type editor.

You create a custom PLC data type structure using the same editing methods that are used
in the data block editor. Add new rows for any data types that are necessary to create the
data structure that you want.

If a new PLC data type is created, then the new PLC type name will appear in the data type
selector drop-down lists in the DB editor and code block interface editor.

You can potentially use PLC data types in the following ways:
® As a data type in a code block interface or in data blocks

e As a template for the creation of multiple global data blocks that use the same data
structure

® As a data type for PLC tag declarations the | and Q memory areas of the CPU

For example, a PLC data type could be a recipe for mixing colors. You can then assign this
PLC data type to multiple data blocks. You can adjust the variables within each data block to
create a specific color.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 133

PLC concepfts

5.4 Data types
54.9 Variant pointer data type
The data type Variant can point to variables of different data types or parameters. The
Variant pointer can point to structures and individual structural components. The Variant
pointer does not occupy any space in memory.
Table 5- 40 Properties of the Variant pointer
Length Representation | Format Example entry
(Byte)
0 Symbolic Operand MyTag
DB_name.Struct_name.element_name | MyDB.Struct1.pressure1
Absolute Operand %MW10
DB_number.Operand Type Length P#DB10.DBX10.0 INT 12
5.4.10 Accessing a "slice" of a tagged data type

PLC tags and data block tags can be accessed at the bit, byte, or word level depending on
their size. The syntax for accessing such a data slice is as follows:

"<PLC tag name>".xn (bit access)

"<PLC tag name>".bn (byte access)

"<PLC tag name>".wn (word access)

"<Data block name>".<tag name>.xn (bit access)
"<Data block name>".<tag name>.bn (byte access)

"<Data block name>".<tag name>.wn (word access)

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word 0 - 1. A word-
sized tag can be accessed by bits 0 - 15, bytes 0 - 1, or word 0. A byte-sized tag can be
accessed by bits 0 - 7, or byte 0. Bit, byte, and word slices can be used anywhere that bits,
bytes, or words are expected operands.

BYTE

x31|x30|x29|x28 [x27 [x26 | x25|x24|:

WORD

134

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

PLC concepfts

5.4 Data types

Note

Valid data types that can be accessed by slice are Byte, Char, Conn_Any, Date, Dint,
DWord, Event_Any, Event_Att, Hw_Any, Hw_Device, HW_Interface, Hw_lo, Hw_Pwm,
Hw_SubModule, Int, OB_Any, OB_Att, OB_Cyclic, OB_Delay, OB_WHINT, OB_PCYCLE,
OB_STARTUP, OB_TIMEERROR, OB_Tod, Port, Rtm, Sint, Time, Time_Of_Day, UDInt,
Ulnt, USInt, and Word. PLC Tags of type Real can be accessed by slice, but data block tags
of type Real cannot.

Examples
In the PLC tag table, "DW" is a declared tag of type DWORD. The examples show bit, byte,
and word slice access:
LAD FBD SCL
Bit access S ™ IF "DW".x11l THEN
l_ "Dt 11— .-
— S . END_IF;
Byte access O b i IF "DW".b2 = "DW".b3
| - | Byte THEN
| e "D b2 — INT ‘e
D" b3 W b3 N2 i END_IF;
Word access AT out:= "DW".w0 AND
Ward "DW" .wl;
EM ENC -
"DV D — [N QuT O D
DU] N2 sk "D]

5.4.11

Declaration

Accessing a tag with an AT overlay

The AT tag overlay allows you to access an already-declared tag of a standard access block
with an overlaid declaration of a different data type. You can, for example, address the
individual bits of a tag of a Byte, Word, or DWord data type with an Array of Bool.

To overlay a parameter, declare an additional parameter directly after the parameter that is
to be overlaid and select the data type "AT". The editor creates the overlay, and you can
then choose the data type, struct, or array that you wish to use for the overlay.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 135

PLC concepfts

5.4 Data types
Example
This example shows the input parameters of a standard-access FB. The byte tag B1 is
overlaid with an array of Booleans:
= B1 Byte 0.0
| - OV AT"B1" Array[0.7] of Bool 0.0
< L) ov[o] Bool 0.0
< L ov[1] Boal 01
< L ov[2] Bool 02
<40 L] ov[3] Bool 03
< L ov[4] Boal 04
<40 L] ov[5] Bool 0.5
< L] ov[&] Bool 0.6
< L] ov[7] Bool 0.7
Another example is a DWord tag overlaid with a Struct, which includes a Word, Byte, and
two Booleans:
< = DwA Dword 20
- » DW1_Struct AT"DWA™ Struct 20
-+ L Ll Word 0.0
< u B1 Byte 20
S | = BO1 Boal 30
-+ L BO2 Bool 31
The Offset column of the block interface shows the location of the overlaid data types
relative to the original tag.
You can address the overlay types directly in the program logic:
LAD FBD SCL
#oV[1] a IF #OV[1] THEN
#OV[1] — ce
— = ;g _ END_IF;
IF #DWl Struct.Wl = W#16#000C THEN
#DW1_Struct Wi == -
L Word s
| rd | #DVA_Struct Wil — i END_IF;
Wi 16#000C V1680000 Nz I
outl := #DW1l Struct.Bl;
MOVE MOVE -
EM ENG = == EM 3 0UT1 <777
H#DWI_Struct.B1 IN 4% OUT1 FDWI _Struct.B1 1M ENO —
IF #OV[4] AND #DWl_Struct.BO2 THEN
#0V[4] #DWA_Struct.BO2 &
1 11 FOV[4] — CC
— o #DW1_Struct.BO2 — st _ END_IF;
S7-1200 Programmable controller
136 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.4 Data types

Rules

® Overlaying of tags is only possible in FB and FC blocks with standard (not optimized)
access.

® You can overlay parameters for all block types and all declaration sections.
® You can use an overlaid parameter like any other block parameter.
® You cannot overlay parameters of type VARIANT.

® The size of the overlaying parameter must be less than or equal to the size of the overlaid
parameter.

® You must declare the overlaying variable immediately after the variable that it overlays
and select the keyword "AT" as the initial data type selection.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 137

PLC concepfts

5.5 Using a memory card

5.5

138

Using a memory card

Note
The CPU supports only the pre-formatted| SIMATIC memory cards|(Page|1546).

Before you copy any program to the formatted memory card, delete any previously saved
program from the memory card.

Use the memory card either as a transfer card or as a program card. Any program that you
copy to the memory card contains all of the code blocks and data blocks, any technology
objects, and the device configuration. A copied program does not contain force values. The
force values are not part of the program, but are stored in the load memory, whether the
internal load memory of the CPU, or the external load memory (a program card). If you insert
a program card in the CPU, STEP 7 then applies the force values only to the external load
memory on the program card.

e Use atransfer card |(Page 142) to copy a program to the internal load memory of the CPU

without using STEP 7. After you insert the transfer card, the CPU first erases the user
program and any force values from the internal load memory, and then copies the
program from the transfer card to the internal load memory. When the transfer process is
complete, you must remove the transfer card.

You can use an empty transfer card to access a password-protected CPU when the
password has been lost or forgotten|(Page 151). Inserting the empty transfer card deletes
the password-protected program in the internal load memory of the CPU. You can then
download a new program to the CPU.

Use a|program card (Page 145) as external load memory for the CPU. Inserting a
program card in the CPU erases all of the CPU internal load memory (the user program
and any force values). The CPU then executes the program in external load memory (the
program card). Downloading to a CPU that has a program card updates only the external
load memory (the program card).

Because the internal load memory of the CPU was erased when you inserted the
program card, the program card must remain in the CPU. If you remove the program
card, the CPU goes to STOP mode. (The error LED flashes to indicate that program card
has been removed.)

You also use a memory card when downloading|/firmware updates (Page 148).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.5 Using a memory card

5.5.1 Inserting a memory card in the CPU

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.

Note that if you do insert a write-protected memory card into the CPU,
STEP 7 will display a diagnostic message on the next power up alerting you
to that fact. The CPU will power up without failure, but instructions involving
recipes or data logs, for example, will return errors if the card is write-
protected.

A warRNiNG

Verify that the CPU is not running a process before inserting the memory card.

If you insert a memory card (whether configured as a program card, transfer card, or
firmware update card) into a running CPU, the CPU goes immediately to STOP mode,
which might cause process disruption that could result in death or severe personal injury.

Before inserting or removing a memory card, always ensure that the CPU is not actively
controlling a machine or process. Always install an emergency stop circuit for your
application or process.

Note
Do not insert V3.0 program transfer cards into S7-1200 V4.0 CPUs.

Version 3.0 program transfer cards are not compatible with version S7-1200 V4.0 CPUs.
Inserting a memory card that contains a V3.0 program causes a CPU error.

If you do insert an invalid version program transfer card (Page 142), you should remove the
card, and perform a STOP to RUN transition, a memory reset (MRES), or cycle power. After
you recover the CPU from the error condition, you can download a valid V4.0 CPU program.

To transfer a V3.0 program to a V4.0 program, you must use the TIA Portal to Change
Device in the Hardware Configuration.

Note

If you insert a memory card with the CPU in STOP mode, the diagnostic buffer displays a
message that the memory card evaluation has been initiated. The CPU will evaluate the
memory card the next time you either change the CPU to RUN mode, reset the CPU
memory with an MRES, or power-cycle the CPU.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 139

PLC concepfts

5.5 Using a memory card

Table 5- 41 Inserting a memory card

To insert a memory card, open the top CPU
door and insert the memory card in the slot. A
push-push type connector allows for easy
insertion and removal.

The memory card is keyed for proper installa-
tion.

CPU behavior when you insert a memory card
When you insert a memory card in the CPU, the CPU peforms the following steps:
1. Transitions to STOP mode (if not already in STOP mode)
2. Prompts for one of the following choices:
— Power cycle
— Transition to RUN mode
— Perform a memory reset

3. Evaluates the card

S7-1200 Programmable controller
140 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.5 Using a memory card

How the CPU evaluates the memory card

If you do not configure the CPU to "Disable copy from internal load memory to external load
memory" in the|Protection properties of the device configuration (Page|212), the CPU
determines what type of memory card you inserted:

Empty memory card: A blank memory card does not have a job file (S7_JOB.S7S). If you
insert a blank memory card, the CPU adds a program job file. It then copies internal load
memory to external load memory (the program file on the memory card) and erases
internal load memory.

Blank program card: A blank program card has a program job file that is empty. In this
case, the CPU copies internal load memory to external load memory (the program file on
the memory card) and erases internal load memory.

If you configured the CPU to "Disable copy from internal load memory to external load
memory" in the Protection properties of the device configuration, the CPU behaves as
follows:

Empty memory card: A blank memory card does not have a job file (S7_JOB.S7S). If you
insert a blank memory card, the CPU does nothing. It does not create a program job file
and it does not copy internal load memory to external load memory (the program file on
the memory card). It does not erase internal load memory.

Blank program card: A blank program card has a program job file that is empty. In this
case, the CPU performs no action. It does not copy internal load memory to external load
memory (the program file on the memory card). It does not erase internal load memory.

If you insert a program card |(Page|145), transfer card (Page 142), or/card that contains a
firmware update |(Page 148)into the CPU, the configuration setting for "Disable copy from
internal load memory to external load memory" has no effect on how the CPU evaluates the
memory card.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 141

PLC concepfts

5.5 Using a memory card

5.5.2 Configuring the startup parameter of the CPU before copying the project to the
memory card

When you copy a program to a transfer card or a program card, the program includes the
startup parameter for the CPU. Before copying the program to the memory card, always
ensure that you have configured the operating mode for the CPU following a power-cycle.
Select whether the CPU starts in STOP mode, RUN mode, or in the previous mode (prior to
the power cycle).

Startup

Startup sfter POWER ON: | Warm restart-RUN -

Comparisan preset 1o actal Mo restart (stay in STOP mode)
P LY armn restart - RUN . e
Warm restart - mode before POWER OFF by

Configuration time for central
and distributed /Q: | 60000 ms |

[O8s should be interruptible

5.5.3 Transfer card

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

S7-1200 Programmable controller
142 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.5 Using a memory card

Creating a transfer card

Always remember to configure the startup parameter of the CPU|(Page|142) before copying
a program to the transfer card. To create a transfer card, follow these steps:

1.

Insert a blank SIMATIC memory card that is not write-protected into an SD card
reader/writer attached to your computer. (If the card is write-protected, slide the
protection switch away from the "Lock" position.)

If you are reusing a SIMATIC memory card that contains a user program, data logs,
recipes, or a firmware update, you must delete the files before reusing the card. Use
Windows Explorer to display the contents of the memory card and delete the
"S7_JOB.S7S" file and also delete any existing folders (such as
"SIMATIC.S7S","FWUPDATE.S7S", "DataLogs", and "Recipes").

NOTICE
Do NOT delete the hidden files "__LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__" and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select

your card reader.

Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.

In the "Memory card" dialog, select "Transfer" from the "Card type" drop-down menu.

At this point, STEP 7 creates the empty transfer card. If you are creating an empty
transfer card, such as to recover from a lost CPU password (Page|151), remove the
transfer card from the card reader.

St o
R TR Storage medium

Memory space

Freespace: | 25053055 Bytes
Used 1pacs: | 8329984 Bytes
Write-promeched

Card characteristics

Mame |50 caed (50

il e —

File systemc | FAT32
Capacity | 33350040 Byten

Zavial number | SMC_Nb5o09nE00

ok Gancel

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214C DC/DC/DC])

in the Project tree and dragging the CPU device to the memory card. (Another method is
to copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 143

PLC concepfts

5.5 Using a memory card

6. In the "Load preview" dialog, click the "Load" button to copy the CPU device to the

memory card.

7. When the dialog displays a message that the CPU device (program) has been loaded

without errors, click the "Finish" button.

Using a transfer card

144

A\ WArRNING

Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a transfer card, always ensure that the CPU is in STOP mode and your

process is in a safe state.

Note
Do not insert V3.0 program transfer cards into later model CPUs.

Version 3.0 program transfer cards are not compatible with later model S7-1200 CPUs.
Inserting a memory card that contains a V3.0 program causes a CPU error.

If you do insert an invalid version program transfer card, then remove the card, perform a
STOP to RUN transition, a memory reset (MRES), or cycle power. After you recover the
CPU from the error condition, you can download a valid CPU program

To transfer the program to a CPU, follow these steps:

1. Insert the transfer card|into the CPU (Page 139). If the CPU is in RUN, the CPU will go to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the rebooting and evaluating the memory card, the CPU copies the program to the
internal load memory of the CPU.

The RUN/STOP LED alternately flashes green and yellow to indicate that the program is
being copied. When the RUN/STOP LED turns on (solid yellow) and the MAINT LED
flashes, the copy process has finished. You can then remove the memory card.

4. Reboot the CPU (either by restoring power or by the alternative methods for rebooting) to
evaluate the new program that was transferred to internal load memory.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the project.

Note

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.5 Using a memory card

5.5.4 Program card

NOTICE

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.

Before you copy any program elements to the program card, delete any
previously saved programs from the memory card.

Creating a program card

When used as a program card, the memory card is the external load memory of the CPU. If
you remove the program card, the internal load memory of the CPU is empty.

Note

If you insert a blank memory card into the CPU and perform a memory card evaluation by
either power cycling the CPU, performing a STOP to RUN transition, or performing a
memory reset (MRES), the program and force values in internal load memory of the CPU are
copied to the memory card. (The memory card is now a program card.) After the copy has
been completed, the program in internal load memory of the CPU is then erased. The CPU
then goes to the configured startup mode (RUN or STOP).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 145

PLC concepfts

5.5 Using a memory card

Always remember to configure the startup parameter of the CPU|(Page|142) before copying
a project to the program card. To create a program card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card
reader/writer attached to your computer. (If the card is write-protected, slide the
protection switch away from the "Lock" position.)

If you are reusing a SIMATIC memory card that contains a user program, data logs,
recipes, or a firmware update, you must delete the files before reusing the card. Use
Windows Explorer to display the contents of the memory card and delete the
"S7_JOB.S7S" file and also delete any existing folders (such as
"SIMATIC.S7S","FWUPDATE.S7S", "DataLogs", and "Recipes").

NOTICE
Do NOT delete the hidden files "__LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__" and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

2. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.
4. In the "Memory card" dialog, select "Program" from the drop-down menu.

Stoenge medium #

Storage i =
Hemnry space
Free spacs: | 25136128 Bytes
Used space: | BAZ2912 Bytes
| wene-proteceed
Card characteristics
¥ Wsmes |50 card (G
Fils system | FAT3Z
Capaciy | 33559040 Mhtes

Zenalnumber. | SMC_ZbGcBST100

Wwnhle lor. | HELFLC 1000

PLC card mode

e T S -

ok, gancel

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214C DC/DC/DC])
in the Project tree and dragging the CPU device to the memory card. (Another method is
to copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

6. In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

S7-1200 Programmable controller
146 System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts
5.5 Using a memory card

Using a program card as the load memory for your CPU

A WARNING

Risks associated with inserting a program card

Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a memory card, always ensure that the CPU is offline and in a safe state.

To use a program card with your CPU, follow these steps:

1. Insert the program card into the CPU. If the CPU is in RUN mode, the CPU goes to STOP
mode. The maintenance (MAINT) LED flashes to indicate that the memory card needs to
be evaluated.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the CPU reboots and evaluates the program card, the CPU erases the internal load
memory of the CPU.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the CPU.

The program card must remain in the CPU. Removing the program card leaves the CPU with
no program in internal load memory.

A wArNING

Risks associated with removing a program card

If you remove the program card, the CPU loses its external load memory and generates an
error. The CPU goes to STOP mode and flashes the error LED.

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death or serious injury to
personnel, and/or damage to equipment.

Do not remove the program card without understanding that you are removing the program
from CPU.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 147

PLC concepfts

5.5 Using a memory card

5.5.5 Firmware update

You can use a SIMATIC memory card for performing a firmware update.

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

You use a SIMATIC memory card when downloading firmware updates from Siemens
Industry Online Support (http://support.industry.siemens.com). From this Web site, navigate
to "Downloads". From there search for the specific type of module that you need to update.

Alternatively, you can access the S7-1200 downloads Web page
(https://support.industry.siemens.com/cs/ww/en/ps/13683/dl) directly.

Note

You cannot update an S7-1200 CPU V3.0 or earlier to S7-1200 V4.0 or V4.1 by firmware
update.

You can also perform a firmware update by one of these methods:
® Using the online and diagnostic tools of STEP 7 /(Page|1318)
® Using the Web server "Module Information" standard Web page|(Page 1023)

® Using the SIMATIC Automation Tool
(https://support.industry.siemens.com/cs/ww/en/view/98161300)

NOTICE

Do not use the Windows formatter utility or any other formatting utility to reformat the
memory card.

If a Siemens memory card is reformatted using the Microsoft Windows formatter utility, then
the memory card will no longer be usable by a S7-1200 CPU.

S7-1200 Programmable controller
148 System Manual, V4.2, 09/2016, ASE02486680-AK

http://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/ps/13683/dl
https://support.industry.siemens.com/cs/ww/en/view/98161300

PLC concepfts

5.5 Using a memory card

To download the firmware update to your memory card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card
reader/writer attached to your computer. (If the card is write-protected, slide the
protection switch away from the "Lock" position.)

You can reuse a SIMATIC memory card that contains a user program or another firmware
update, but you must delete some of the files on the memory card.

To reuse a memory card, you must delete the "S7_JOB.S7S" file and any existing "Data
Logs" folders or any folder (such as "SIMATIC.S7S" or "FWUPDATE.S7S") before
downloading the firmware update. Use Windows Explorer to display the contents of the
memory card and to delete the file and folders.

NOTICE
Do NOT delete the hidden files "__LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__" and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

2. Select the zip file for the firmware update that corresponds to your module, and download
it to your computer. Double-click the file, set the file destination path to be the root
directory of the SIMATIC memory card, and start the extraction process. After the
extraction is complete, the root directory (folder) of the memory card will contain a
"FWUPDATE.S7S" directory and the "S7_JOB.S7S" file.

3. Safely eject the card from the card reader/writer.

To install the firmware update, follow these steps:

AWARNING
Verify that the CPU is not actively running a process before installing the firmware update.

Installing the firmware update will cause the CPU to go to STOP mode, which could affect
the operation of an online process or machine. Unexpected operation of a process or
machine could result in death or injury to personnel and/or property damage.

Before inserting the memory card, always ensure that the CPU is offline and in a safe state.

1. Insert the memory card into the CPU. If the CPU is in RUN mode, the CPU then goes to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

2. Power-cycle the CPU to start the firmware update. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

Note

To complete the firmware upgrade for the module, you must ensure that the external 24 V
DC power to the module remains on.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 149

PLC concepfts

5.5 Using a memory card

150

After the CPU reboots, the firmware update starts. The RUN/STOP LED alternately
flashes green and yellow to indicate that the update is being copied. When the
RUN/STOP LED turns on (solid yellow) and the MAINT LED flashes, the copy process
has finished. You must then remove the memory card.

3. After removing the memory card, reboot the CPU again (either by restoring power or by
the alternative methods for rebooting) to load the new firmware.

The user program and hardware configuration are not affected by the firmware update.
When the CPU is powered up, the CPU enters the configured start-up state. (If the startup
mode for your CPU was configured to "Warm restart - mode before POWER OFF", the CPU
will be in STOP mode because the last state of the CPU was STOP.)

Note
Updating multiple modules connected to CPU

If your hardware configuration contains multiple modules that correspond to a single
firmware update file on the memory card, the CPU applies the updates to all applicable
modules (CM, SM, and SB) in configuration order, that is, by increasing order of the module
position in Device Configuration in STEP 7.

If you have downloaded multiple firmware updates to the memory card for multiple modules,
the CPU applies the updates in the order in which you downloaded them to the memory
card.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

PLC concepfts

5.6 Recovery from a lost password

5.6 Recovery from a lost password

If you have lost the password for a password-protected CPU, use an empty transfer card to
delete the password-protected program. The empty transfer card erases the internal load
memory of the CPU. You can then download a new user program from STEP 7 to the CPU.

For information about the creation and use of an empty transfer card, see the section of
transfer cards (Page|142).

A WARNING

Verify that the CPU is not actively running a process before inserting the memory card

If you insert a transfer card in a running CPU, the CPU goes to STOP. Control devices can
fail in an unsafe condition, resulting in unexpected operation of controlled equipment. Such
unexpected operations could result in death or serious injury to personnel, and/or damage
to equipment.

Before inserting a transfer card, always ensure that the CPU is in STOP mode and your
process is in a safe state.

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 151

PLC concepfts

5.6 Recovery from a lost password

S7-1200 Programmable controller
152 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

You create the device configuration for your PLC by adding a CPU and additional modules to
your project.

102 101 1 2 3

Communication module (CM) or communication processor (CP): Up to 3, inserted in slots 101,
102, and 103

CPU: Slot 1
PROFINET port of CPU

Signal board (SB), communication board (CB) or battery board (BB): up to 1, inserted in the
CPU
Signal module (SM) for digital or analog I/O: up to 8, inserted in slots 2 through 9

(CPU 1214C, CPU 1215C and CPU 1217C allow 8, CPU 1212C allows 2, CPU 1211C does not
allow any)

© ®e0 ©

Configuration control

Device configuration for the S7-1200 also supports "configuration control|(Page 159)" where
you can configure a maximum configuration for a project including modules that you might
not actually use. This feature, sometimes also called "option handling", allows you to
configure a maximum configuration that you might use with variations in the installed
modules in multiple applications.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 153

Device configuration

6.1 Inserting a CPU

6.1 Inserting a CPU

You can insert a CPU into your pro-
ject from either the Portal view or the
Project view of STEP 7:

¢ In the Portal view, select "Devices
& Networks" and click "Add new
device".

¢ In the Project view, under the

project name, double-click "Add
new device". Devices

Devices &
HNotworks

*] Project]
B ~dd new device

Be sure you insert the correct model and firmware version from the list. Selecting the CPU
from the "Add new device" dialog creates the rack and CPU.

Note
With STEP 7 V14, you cannot add a V1.0 S7-1200 CPU to your project.

S7-1200 Programmable controller
154 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

"Add new device" dialog

Device view of the hardware
configuration

Selecting the CPU in the Device
view displays the CPU proper-
ties in the inspector window.

The CPU does not have a pre-
configured IP address. You must
manually assign an IP address
for the CPU during the device
configuration. If your CPU is
connected to a router on the
network, you also enter the IP
address for a router.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

- e R
=@ mmnc s
-
Camchen et
+ [Ui sonae
& g o s soxery P DATIDT
+ (g o 130 32 sty
EI N E B
L T T
i vansn e =
L
gy THRE, BT pre pple
mar —Emmmura:‘lucn
oz e st o 4 el
EeRnn ke b Sl hesd oo
Baaid 450 00 § conswaricaties o
waeial o 1wk

rim e
rimournwcpaony

¥ [eoprched oy tam

[—
for WD xrwurion: 3 B4 el 1000
Intaran oy segrnming = and

6.1 Inserting a CPU

& High speed ooumers THED]
B Fulam garammiar (FTOAPWN]
samp
el

PLC_T ¢ PLC_T [CPU 1214C DODODC) Hardwrare catalog
|; Topology wiew Id‘ Mistwnrk wivw 1“ I:I.-l\l.rip. wiew Oiptitns
dr[Fci T HeHgst o
) w | Catalog
=
&l Filt=r
» [oru
v [sigral bosrds
+ [Communications boards
+ [Batmery boards
s [goi
» (@ oo
» g oG
viga
+ (A0
¥ [Aty
w | ¥ [communsatans madules
£ | 1 >y r_’ Techrnlagy modules
1|
_' Gemeral |
¥ Genaral
v FCFINETince dace Ethemet scdmsezs
Ganaral Mstiitaln natwasked with
B schumncad Bubner [rhrnensubed =
T SN nBan [T —
- DN4DG1 D
eneral F—
» Digienl inputa
B DAl (E) BerIPaBaEss i e pajeer
¥ addra
Herdwn e demier ' \Faddiess | 192 1280 1 |
P Hz 1 Fubretmesk [om= . smsz== 0 |

] sz 1P e
Rowtraddress [o [] []
) BeTIPandiess s & AT mEtiod

[

155

Device configuration

6.2 Uploading the configuration of a connected CPU

6.2

Uploading the configuration of a connected CPU

STEP 7 provides two methods for uploading the hardware configuration of a connected
CPU:

e Uploading the connected device as a new station

e Configuring an unspecified CPU and detecting the hardware configuration of the
connected CPU

Note, however, that the first method uploads both the hardware configuration and the
software of the connected CPU.

Uploading a device as a new station

156

To upload a connected device as a new station, follow these steps:

1. Expand your communications interface from the "Online access" node of the project tree.
2. Double-click "Update accessible devices".

3. Select the PLC from the detected devices.

~ ([Online access
1 Displaythide interfaces
» [0 UsE [57USE]
» [COM[RS232IPPl multi-master cable]
« 1| D-Link DUB-E100 USE 2.0 Fast Ethernet .
E;]? Update accessible devices
b 'moplc_3[122.168.01]

4. From the Online menu of STEP 7, select the "Upload device as new station (hardware
and software)" menu command.

STEP 7 uploads both the hardware configuration and the program blocks.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration
6.2 Uploading the configuration of a connected CPU

Detecting the hardware configuration of an unspecified CPU

oline _[Cpioes Tosls Window Help If you are connected to a CPU, you can upload the
i 7 configuration of that CPU, including any modules, to
Mipiotn: [your project. Simply create a new project and select

the "unspecified CPU" instead of selecting a specific

! Ciowenload to device carlel
CPU. (You can also skip the device configuration en-
E - tirely by selecting the "Create a PLC program" from the
ke _ "First steps". STEP 7 then automatically creates an
m unspecified CPU.)
il oot : From the program editor, you select the "Hardware

Ay Accesdible deviess =210

detection" command from the "Online" menu.

From the device configuration editor, you select the option for detecting the configuration of
the connected device.

-

1
m=n
The device is not specified
=4 Flease use the to specdy the CPU,
= OF the configuration of the connected dewvice

After you select the CPU from the online dialog and click the Load button, STEP 7 uploads
the hardware configuration from the CPU, including any modules (SM, SB, or CM). You can
then configure the parameters for the CPU and the modules (Page 170).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK 157

Device configuration

6.3 Adding modules to the configuration

6.3 Adding modules to the configuration

Use the hardware catalog to add modules to the CPU:

e Signal module (SM) provides additional digital or analog I/O points. These modules are
connected to the right side of the CPU.

e Signal board (SB) provides just a few additional I/O points for the CPU. The SB is
installed on the front of the CPU.

e Battery Board 1297 (BB) provides long-term backup of the realtime clock. The BB is
installed on the front of the CPU.

e Communication board (CB) provides an additional communication port (such as RS485).
The CB is installed on the front of the CPU.

e Communication module (CM) and communication processor (CP) provide an additional
communication port, such as for PROFIBUS or GPRS. These modules are connected to
the left side of the CPU.

To insert a module into the device configuration, select the module in the hardware catalog

and either double-click or drag the module to the highlighted slot. You must add the modules

to the device configuration and download the hardware configuration to the CPU for the
modules to be functional.

Table 6- 1 Adding a module to the device configuration

Module Select the module Insert the module Result
SM w Catal
Sen::‘: = .
& Filter
L =]
+ [Ssgnal board
» [l Communications Boards
» (1§ Batiery board
~mo
- (g DEE x 24VDE
I £E57 220-1BF30-0XED
¥ [006 « 20D
SB, BB v | Caralag
or CB E-'.ea:dl
[Filvar
’ ;u-:w
- [Signal board
r @
v[@oo
-’}.‘nmo
= [D120« 240DC
I ¢E27 223-0BDEE0XES
$E27 223-3B030-00B0
» [DIS002 < 50D
CM or » (@ oioe
cp |ran
*lmee
L]
v"a_commumcanema midides
b W FROFIBUS
v:"l’oanm-pmnt
BOLE R340 RE2RE
g onnzan meass)
- [CM 1230 B 2MES)
- [l 4857 2ai-1cnB10xB0
¥ W A5 interiace
S7-1200 Programmable controller
158 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration
6.4 Configuration control/

With the "configuration control" feature (Page| 159), you can add signal modules and signal
boards to your device configuration that might not correspond to the actual hardware for a

specific application, but that will be used in related applications that share a common user

program, CPU model, and perhaps some of the configured modules.

6.4 Configuration control

6.4.1 Advantages and applications of configuration control

Configuration control can be a useful solution when you create an automation solution
(machine) that you intend to use with variations in multiple installations.

You can load a STEP 7 device configuration and user program to different installed PLC
configurations. You only need to make a few easy adaptations to make the STEP 7 project
correspond to the actual installation.

6.4.2 Configuring the central installation and optional modules

Configuration control with STEP 7 and the S7-1200 enables you to configure a maximum
configuration for a standard machine and to operate versions (options) that use a subset of
this configuration. The PROFINET with STEP 7 manual
(http://support.automation.siemens.com/\WW/view/en/49948856) refers to these types of
projects as "standard machine projects".

A control data record that you program in the startup program block notifies the CPU as to
which modules are missing in the real installation as compared to the configuration or which
modules are located in different slots as compared to the configuration. Configuration control
does not have an impact on the parameter assignment of the modules.

Configuration control gives you the flexibility to vary the installation as long as you can derive
the real configuration from the maximum device configuration in STEP 7.

To activate configuration control and structure the required control data record, follow these
steps:

1. Optionally, reset the CPU to factory settings to ensure that an incompatible control data
record is not present in the CPU.

2. Select the CPU in device configuration in STEP 7.

3. From the Configuration control node in the CPU properties, select the "Enable
reconfiguration of device with user program" check box.

g Properties [fijinfo | %) Diagnostics |

General [I!JTaga | System constants | Texts

b Websemrver X .
Configuration control

User interface lang...

Time of day | Configuration control for central configuration
Protection
= | Allow to reconfigure the device via the user program

Connection resgurces

Overview of addresses |

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 159

http://support.automation.siemens.com/WW/view/en/49948856

Device configuration

6.4 Configuration contro/

160

4. Create a PLC data type to contain the control data record. Configure it as a struct that
includes four USints for configuration control information and additional USints to
correspond to the slots of a maximum S7-1200 device configuration, as follows:

ConfigControl_Struct

Mame Data type Default value |Comment
1 |0 - ConfigControl Struct E
2 |ag m Block_length USInt 16 Length of contrel data record, including header
3 . Block_ID Usint 196 Data record number
4 g = Version Usint 5
5 |0 = Subversion Usint]
6 | = Slot_1 Usint 255 Assignment for CPU annexcard/Actual annexcard
7 | = Slot_2 Usint 255 Configured slot 2/ Assigned “real” slot
8 | = Slot_3 USint 255 Configured slot 3 [Assigned “real” slot
9 |gQ = Slot_4 Usint 255 Configured slot4 [Assigned “real” slot
10 |0 = Slot_5 USint 255 Configured slot 5 [Assigned “real” slot
i1 |gg = Slot_6 Usint 255 Configured slot 6 [Assigned “real” slot
12 |0 = Slot_7 Usint 255 Configured slot 7 [Assigned "real” slot
13 |q0 = Slot_8 Usint 255 Configured slot 8 [Assigned “real” slot
14 g = Slot_9 Usint 255 Configured slot 9 [Assigned “real” slot
15 |qQ = Slot_101 Usint 255 Configured slot 101 [Assigned “real” slot
16 |«qQ = Slot_102 Usint 255 Configured slot 102 [Assigned "real” slot
17 |-q0 = Slot_103 UsSint 255 Configured slot 103 [Assigned “real” slot

5. Create a data block of the PLC data type that you created.

Rdd new block

Hame:
ControlDataRecord

Type: I C-l::ﬂﬁéclcn'.fn.l;ﬁm: -
. W Global DB
% Sl W Aray DB
Orgénistion Humber: 3 WRREC_SFB [SFBS53]
block i ConfgControl_Struct
1 Receive_Conditions
I FILE_DB_HEADER
b IE| PE_PLUS
t Description: i [EC_COUNTER

Function block

i

Function

&

Data bleck

Deta blocks (DBS) 51 |t |EC_DCOUNTER
1 IEC_SCOUNTER
I IEC_UDCOUNTER
IE IEC_LTIMER

[X

More...

> | Additional information

[w Add new end gpen

[ok || coneet |

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

6.4 Configuration control/

6. In this data block, configure the Block_length, Block_ID, Version, and Subversion as
shown below. Configure the values for the slots based on their presence or absence and
position in your actual installation:

— 0: Configured module is not present in the actual configuration. (The slot is empty.)
- 1109, 101 to 103: The actual slot position for the configured slot

— 255: The STEP 7 device configuration does not include a module in this slot.

Note
Configuration control not available for HSCs and PTOs on the signal board
If you have a signal board in the CPU that you configure for HSCs or PTOs, you must not

disable it with a "0" in Slot_1 of the configuration control data record. Configured HSC and
PTO devices of the CPU are mandatory regarding configuration control.

ControlDataRecord

MName Data type | Startwvalue |Comment
1 4 - Static | |
2 40 = - ConfigControl Struct
3 |« s Block_length USInt Length of control data record, including header
4 <0 L] Black_ID Usint 196 Data record number
5 |4 s Version Usint 5
6 |1 s Subversion Usint 0
7 | s Slot_1 Usint 255 Assignment for CPU annex cardiActual annexc..
8 |« L] Slot_2 Usint 255 Configured slot 2/ Assigned “real” slot
o |4l s Slot_3 Usint 255 Configured slot 31 Assigned “real” slot
10 <0 s Slot_4 Usint 255 Configured slot 4 [Assigned “real” slot
11 <1 s Slot 5 Usint 255 Configured slot 5/ Assigned “real” slot
12 < Ll Slot_6 Usint 255 Configured slot 6/ Assigned “real” slot
13 <0 s Slot 7 Usint 255 Configured slot 7 | Assigned “real” slot
14 <0 s Slot 8 Usint 255 Configured slot 8 [Assigned “real” slot
15 <40 s Slot 9 Usint 255 Configured slot 9/ Assigned “real” slot
16 <0 L] Slot_101 Usint 255 Configured slot 101 | Assigned “real® slot
17 | s Slot_102 Usint 255 Configured slot 102 Assigned "real” slot
18 <0 s Slot 103 usint Zh5 Confiqured slot 103 [Assigned “real” slot

See Example of configuration control|(Page 166) for an explanation of how to assign the
slot values.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 161

Device configuration

6.4 Configuration contro/

7. In the startup OB, call the extended WRREC (Write data record) instruction to transfer the
control data record that you created to index 196 of hardware ID 33. Use a label and JMP
(jump) instruction to wait for the WRREC instruction to complete.

Network 1:
WRREC
“WRREC_DB"
WRREC
Variant
EM ENOD
"Run_WWRREC" — REQ DOMNE —i"done”
33— 1D BUSY —1"busy”
196 INDEX ERROR —"error”
"ControlDataReco STATUS "status”
rd" RECORD -
Network 2:
"Run_WRREC" "busy’ WRREC
11 1|
11 11 {1mp }
Note

Configuration control is not in effect until the WRREC instruction transfers the control data
record in the startup OB. If you have enabled configuration control and the CPU does not
have the control data record, it will go to STOP mode when it exits STARTUP mode. Be sure
that you program the startup OB to transfer the control data record.

Module arrangement

The following table shows the slot number assignment:

Slot Modules

1 Signal board or communication board (CPU annex card)
2t09 Signal modules

101 to 103 Communication modules

162

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

Control data record

6.4 Configuration control/

A control data record 196 contains the slot assignment and represents the actual
configuration, as shown below:

Byte Element Value Explanation
0 Block length 16 Header
1 Block ID 196
2 Version 5
3 Subversion 0
4 Assignment of CPU annex card Actual annex card, 0, or 2565* | Control element
5 Assignment of configured slot 2 Actual slot, 0, or 255* Describes in each element which
real slot in the device is assigned to
— . the configured slot.
12 Assignment of configured slot 9 Actual slot, 0, or 255*
13 Assignment of configured slot 101 Actual slot or 255* Unlike signal modules, the actual
14 Assignment of configured slot 102 Actual slot or 255* slot for physically-present commu-
- - N nication modules must be the same
15 Assignment of configured slot 103 Actual slot or 255 as the configured slot.
*Slot values:

0: Configured module is not present in the actual configuration. (The slot is empty.)

1t0 9, 101 to 103: The actual slot position for the configured slot

255: The STEP 7 device configuration does not include a module in this slot.

Note

Alternative to creating a PLC tag type

As an alternative to creating a custom PLC tag type, you can create a data block directly with
all of the structure elements of a control data record. You could even configure multiple
structs in this data block to serve as multiple control data record configurations. Either
implementation is an effective way to transfer the control data record during startup.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

163

Device configuration

6.4 Configuration contro/

Rules

Observe the following rules:

Configuration control does not support position changes for communication modules. The
control data record slot positions for slots 101 to 103 must correspond to the actual
installation. If you have not configured a module for the slot in your device configuration,
enter 255 for that slot position in the control data record. If you have configured a module
for the slot, enter the configured slot as the actual slot for that slot position.

F-1/0 modules do not support configuration control. The control data record slot positions
for an F-1/0O module must equal the configured slot position for the F-1/0O module. If you
attempt to move or delete a configured F-I/O module using the control data record, then
all actually-installed F-1/0 modules will raise a "parameter assignment" error and disallow
exchange.

You cannot have embedded empty (unused) slots between filled (used) slots. For
example, if the actual configuration has a module in slot 4, then the actual configuration
must also have modules in slots 2 and 3. Correspondingly, if the actual configuration has
a communication module in slot 102, then the actual configuration must also have a
module in slot 101.

If you have enabled configuration control, the CPU is not ready for operation without a
control data record. The CPU returns from startup to STOP if a startup OB does not
transfer a valid control data record. The CPU does not initialize the central I/O in this case
and enters the cause for the STOP mode in the diagnostics buffer.

The CPU saves a successfully-transferred control data record in retentive memory, which
means that it is not necessary to write the control data record 196 again at a restart if you
have not changed the configuration.

Each real slot must be present only once in the control data record.

You can only assign a real slot to one configured slot.

Note
Modifying a configuration

The writing of a control data record with a modified configuration triggers the following
automatic reaction by the CPU: Memory reset with subsequent startup with this modified
configuration.

As a result of this reaction, the CPU deletes the original control data record and saves the
new control data record retentively.

164

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

6.4 Configuration control/

Behavior during operation

For the online display and for the display in the diagnostics buffer (module OK or module
faulty), STEP 7 uses the device configuration and not the differing real configuration.

Example: A module outputs diagnostics data. This module is configured in slot 4, but is
actually inserted in slot 3. The online view indicates that configured slot 4 is faulty. In the real
configuration, the module at slot 3 indicates an error by its LED display.

If you have configured modules as missing in the control data record (0 entry), the
automation system behaves as follows:

e Modules designated as not present in the control data record do not supply diagnostics
and their status is always OK. The value status is OK.

e Direct writing access to the outputs or writing access to the process image of outputs that
are not present proceeds with no effect; the CPU reports no access error.

® Direct read access to the inputs or read access to the process image of inputs that are
not present results in a value "0" for each input; the CPU reports no access error.

e \Writing a data record to a module that is not present proceeds with no effect; the CPU
reports no error.

e Attempting to read a data record from module that is not present resuls in an error
because the CPU cannot return a valid data record.

Error messages

The CPU returns the following error messages if an error occurs during writing of the control
data record:

Error code Meaning

16#80B1 Invalid length; the length information in the control data record is not correct.

16#80B5 Configuration control parameters not assigned

16#80E2 Data record was transferred in the wrong OB context. The data record must be transferred in the
startup OB.

16#80B0 Block type (byte 2) of control data record is not equal to 196.

16#80B8 Parameter error; module signals invalid parameters, for example:

e The control data record attempts to modify the configuration of a communication module or a
communication annex card. The real configuration for communication modules and a communica-
tion annex card must equal the STEP 7 configuration.

e The assigned value for an unconfigured slot in the STEP 7 project is not equal to 255.
e The assigned value for a configured slot is out of range.

e The assigned configuration has an "internal" empty slot, for example, slot n is assigned and slot
n-1 is not assigned.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 165

Device configuration

6.4 Configuration contro/

6.4.3 Example of configuration control

This example describes a configuration consisting of a CPU and three /O modules.The
module at slot 3 is not present in the first actual installation, so you use configuration control
to "hide" it.

In the second installation, the application includes the module that was initially hidden but

now includes it in the last slot. A modified control data record provides the information about
the slot assignments of the modules.

Example: Actual installation with configured but unused module

The device configuration contains all modules that can be present in an actual installation
(maximum configuration). In this case, the module that is in slot 3 in the device configuration
is not present in the real installation.

FIEMTRE

Figure 6-1 Device configuration of maximum installation with three signal modules

SIEMENS

Figure 6-2 Actual installation with module configured in slot 3 absent, and module configured for slot
4 in actual slot 3

S7-1200 Programmable controller
166 System Manual, V4.2, 09/2016, A5E02486680-AK

Device configuration

6.4 Configuration control/

To indicate the absence of the missing module, you must configure slot 3 in the control data

record with 0.

ControlDataRecord

Mame
< ¥ Stafic

W 00 = v W M=

e e |
L I

badbddcddddbddang

]l
o~

S7-1200 Programmable controller

s ¥ (ConfigControl

Block_length
Block_ID
Version
Subverzion
Slot_ 1
Slot 2
Slot 3
Slot_4
Slot 5
slot 6
Slot 7
Slot_ 8
Slot 9
Slot_101
Slot_102
Slot 103

System Manual, V4.2, 09/2016, ASE02486680-AK

Data type

Struct
Usint
Usint
Usint
UsInt
Usint
Usint
Usint
Usint
Usint
Usint
Usint
UsInt
UsInt
Usint
Usint
Usint

start value

Comment

Length of control data record, including header

Data record number

Assignment for CPU annexcardiActual annexca..
Configured slot 2 | Assigned “real” slot
Configured slot 3 | Assigned “real” slot
Configured slot 4 | Assigned “real” slot
Configured slot 51 Assigned “real” slot
Configured slot 6 1 Assigned “real” slot
Configured slot 7 | Assigned “real” slot
Configured slot 8 | Assigned “real” slot
Configured slot 9/ Assigned “real” slot
Configured slot 101 | Assigned “real” slot
Configured slot 102 [Assigned "real” slot
Confiqured slot 103 [Assigned “real” slot

167

Device configuration

6.4 Configuration contro/

Example: Actual installation with module subsequently added to a different slot

In the second example, the module in slot 3 of the device configuration is present in the
actual installation but is in slot 4.

SICMIRT

SEET) SIMATIC
= $7-1200

Figure 6-3 Device configuration compared to actual installation with modules in slots 3 and 4
swapped

S7-1200 Programmable controller
168 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

6.4 Configuration control/

To correlate the device configuration to the actual installation, edit the control data record to
assign the modules to the correct slot positions.

ControlDataRecord

Marme
1 |40 = Static
2 4 = - ConfigControl
3 | - Block_length
4 a] Block_ID
5 < = Version
6 <10 L Subverzion
7 -l] slot_1
g8 @ = slot_2
o g = Slot 3
10| = Slot_4
1ilgqg = Slot 5
2@ = slot_6
13 4 = Slot. 7
14 g = clot_g
154 = Slot 9
16 41 = slot_101
17 4 = Slot_102
1Blag = Slot_103

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

Data type

Struct
USint
USInt
USint
USint
USint
USInt
USInt
USint
USint
USint
USint
Usint
Usint
USInt
Usint
USint

startvalue Comment

oW
(]

Length of contrel data record, including header
Data recard number

L
wn

Assignment for CPU annex card/Actual annexcard
Configured slot 2i Assigned “real” slot
Configured slot 3 [Aszigned “real” slot
Configured slot 4 [Assigned "real” slot
Configured slot 5/ Assigned “real” slot
Configured slot 6 [Assigned "real” slot
Configured slot 7 [Assigned “real” slot
Configured slot 8 [Assigned "real” slot
Configured slot 9@ [Assigned “real” slot
Configured slot 101 [Assigned "real” slot
Configured slot 102 [Assigned “real” slot

P bR R R R R OB OR W BN RS

L S O O R TR

[TR R Y TR W R TR W S R

Configured slot 103 | Assigned "real” slot

169

Device configuration

6.5 Changing a device

6.5 Changing a device

You can change the device type of a configured CPU or module. From Device configuration,
right-click the device and select "Change device" from the context menu. From the dialog,
navigate to and select the CPU or module that you want to replace. The Change device
dialog shows you compatibility information between the two devices.

For considerations on changing devices between different CPU versions, refer to
Exchanging a V3.0 CPU for a V4.2 CPU (Page | 1571).

6.6 Configuring the operation of the CPU

6.6.1 Overview

To configure the operational parameters for the CPU, select the CPU in the Device view
(blue outline around whole CPU), and use the "Properties" tab of the inspector window.

4 Properties i'.'-*;:nr'o_i_fni-,_i‘riagnnstl-ci

Genaral 10 tags System constants | Teus
L3 Ig: ﬂ! I .
;i
¥ FROFINET interface [41] . T
» DI14DG 10
Progect Information
b A JAD T
b Highspeed counters (H5C)
¥ Fulse generstors (FTOIPHS) Hame:s |(FLC 1
AN Author |tees!
Cyele —
i - Comment: A
Communication load
System and clock memicny
b Wb server " {
User interface languages L e
Time of day 4 Shat |1
¥ Pretection rack [o

Configuration conbrol

CONRECTION MEEoUNCES Catalog infarmation

Dwernsw af sddresies

Shart designaton: |CPU 1295C DODODC

S7-1200 Programmable controller
170 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

6.6 Configuring the operation of the CPU

Table 6- 2 CPU properties
Property Description
PROFINET interface Sets the IP address for the CPU and time synchronization
DI, DO, and Al Configures the behavior of the local (on-board) digital and analog I/O (for example, digital

input filter times and digital output reaction to a CPU stop).

High-speed counters
(Page|555) and|pulse gen-
erators|(Page 492)

Enables and configures the high-speed counters (HSC) and the pulse generators used for
pulse-train operations (PTO) and pulse-width modulation (PWM)

When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or motion control instructions), the corresponding output addresses are removed
from the Q memory and cannot be used for other purposes in your user program. If your
user program writes a value to an output used as a pulse generator, the CPU does not write
that value to the physical output.

Startup |(Page 87)

Startup after POWER ON: Selects the behavior of the CPU following an off-to-on transition,
such as to start in STOP mode or to go to RUN mode after a warm restart

Supported hardware compatibility: Configures the substitution strategy for all system com-
ponents (SM, SB, CM, CP and CPU):

¢ Allow acceptable substitute

e Allow any substitute (default)

Each module internally contains substitution compatibility requirements based on the num-
ber of 1/0, electrical compatibility, and other corresponding points of comparison. For exam-
ple, a 16-channel SM could be an acceptable substitute for an 8-channel SM, but an 8-
channel SM could not be an acceptable substitute for a 16-channel SM. If you select "Allow
acceptable substitute”, STEP 7 enforces the substitution rules; otherwise, STEP 7 allows
any substitution.

Parameter assignment time for distributed 1/0: Configures a maximum amount of time (de-
fault: 60000 ms) for the distributed 1/O to be brought online. (The CMs and CPs receive
power and communication parameters from the CPU during startup. This assignment time
allows time for the 1/O connected to the CM or CP to be brought online.)

The CPU goes to RUN as soon as the distributed 1/O is online, regardless of the assignment
time. If the distributed I/O has not been brought online within this time, the CPU still goes to
RUN--without the distributed 1/0.

Note: If your configuration uses a CM 1243-5 (PROFIBUS master), do not set this parameter
below 15 seconds (15000 ms) to ensure that the module can be brought online.

OBs should be interruptible: Configures whether OB execution (for all OBs) in the CPU is
interruptible or non-interruptible (Page| 105)

Cycle|(Page|109)

Defines a maximum cycle time or a fixed minimum cycle time

Communication load

Allocates a percentage of the CPU time to be dedicated to communication tasks

System and clock memory
(Page|112)

Enables a byte for "system memory" functions and enables a byte for "clock memory" func-
tions (where each bit toggles on and off at a predefined frequency)

Web server|(Page 1001)

Enables and configures the Web server feature

Time of day

Selects the time zone and configures daylight saving time

Multilingual support
(Page|175)

Assigns a project language for the Web server to use for displaying diagnostic buffer entry
texts for each of the possible Web server user interface display languages.

Protection|(Page|210)

Sets the read/write protection and passwords for accessing the CPU

Configuration control

Enables configuring a master device configuration that you can control for different actual

(Page 159) device configurations
Connection resources Provides a summary of the communication connection resources that are available for the
(Page|801) CPU and the number of connection resources that have been configured

Overview of addresses

Provides a summary of the I/O addresses that have been configured for the CPU

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

171

Device configuration

6.6 Configuring the operation of the CPU

6.6.2 Configuring digital input filter times

The digital input filters protect your program from responding to unwanted fast changes in
the input signals, as may result from switch contact bounce or electrical noise. The default
filter time of 6.4 ms blocks unwanted transitions from typical mechanical contacts. Different
points in your application can require shorter filter times to detect and respond to inputs from
fast sensors, or longer filter times to block slow contact bounce or longer impulse noise.

An input filter time of 6.4 ms means that a single signal change, from ‘0’ to “1° or from ‘1’ to
‘0’, must continue for approximately 6.4 ms to be detected, and a single high or low pulse
shorter than approximately 6.4 ms is not detected. If an input signal switches between ‘0’
and ‘1’ more rapidly than the filter time, the input point value can change in the user program
when the accumulated duration of new value pulses over old value pulses exceeds the filter
time.

The digital input filter works this way:

® When a "1"is input, it counts up, stopping at the filter time. The image register point
changes from "0" to "1" when the count reaches the filter time.

e When a "0" is input, it counts down, stopping at "0". The image register point changes
from "1" to "0" when the count reaches "0".

e |[f the input is changing back and forth, the counter will count up some and count down
some. The image register will change when the net accumulation of counts reaches
either the filter time or "0".

® A rapidly-changing signal with more "0’s" than "1’s" will eventually go to "0", and if there
are more "1’s" than "0’s", the image register will eventually change to "1".

|G Propetties. | L nfe 0] &l Diagnostics

General ;|"|-|l]- Texts

s
- Dl inpasts

* Channadd

input bleevs. |4

7] Ematde g e dgpe dutectio

5 erlliz
[Emable fatlng edge deteeno,

Each input point has a single filter configuration that applies to all uses: process inputs,
interrupts, pulse catch, and HSC inputs. To configure input filter times, select "Digital Inputs".

S7-1200 Programmable controller
172 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration
6.6 Configuring the operation of the CPU

The default filter time for the digital inputs is 6.4 ms. You can select a filter time from the
Input filters drop-down list. Valid filter times range from 0.1 us to 20.0 ms.

A WARNING

Risks with changes to filter time for digital input channel

If you change the filter time for a digital input channel from a previous setting, a new "0"
level input value may need to stay at "0" for up to 20.0 ms before the filter becomes fully
responsive to new inputs. During this time, short "0" pulse events of duration less than 20.0
ms may not be detected or counted.

This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.

To ensure that a new filter time goes immediately into effect, a power cycle of the CPU
must be applied.

Configuring filter times for digital inputs used as HSCs

For inputs that you use as high-speed counters (HSCs), change the input filter time to an
appropriate value to avoid missing counts.

Siemens recommends the following settings:

Type of HSC Recommended input filter time
1 MHz 0.1 microseconds
100 kHz 0.8 microseconds
30 kHz 3.2 microseconds

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 173

Device configuration

6.6 Configuring the operation of the CPU

6.6.3

174

Pulse catch

The S7-1200 CPU provides a pulse catch feature for digital input points. The pulse catch
feature allows you to capture high-going pulses or low-going pulses that are of such a short
duration that they would not always be seen when the CPU reads the digital inputs at the
beginning of the scan cycle.

When pulse catch is enabled for an input, a change in state of the input is latched and held
until the next input cycle update. This ensures that a pulse which lasts for a short period of
time will be caught and held until the CPU reads the inputs.

The figure below shows the basic operation of the S7-1200 CPU with and without pulse
catch enabled:

Scan cycle ‘ Next scan cycle
Physical input | I

The CPU misses this pulse because the input
turned on and off before the CPU updated the
process-image input register

Output from pulse catch

1
1
1
:
1
Disabled _ [|
1
1
1
Enabled '_l

Because the pulse catch function operates on the input after it passes through the input filter,
you must adjust the input filter time so that the pulse is not removed by the filter. The figure
below shows a block diagram of the digital input circuit:

T Input update T Input update
1
1
1
1
1
I
]
1
1
I The CPU catches this pulse on the physical input

. . . ! !
® p| Opfical 1 pfDigitalinput | | Pulse 4y cpy

isolation filter catch

External

digital input Pulse catch
enable

The figure below shows the response of an enabled pulse catch function to various input
conditions. If you have more than one pulse in a given scan, only the first pulse is read. If
you have multiple pulses in a given scan, you should use the rising/falling edge interrupt

events:

Scan cycle ‘ Next scan cycle

T Input update T Input update

Input to pulse catch —— L—T 1

Output from pulse catch ——

Input to pulse catch

I
: L1
Output from pulse catch m

Input to pulse catch

|
1
|
1
1

T
—r

Output from pulse catch

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration
6.7 Configuring multilingual support

6.7 Configuring multilingual support

The Multilingual support settings allow you to assign one of two project languages for each
user interface language for the S7-1200 Web server/(Page 1001). You can also configure no
project language for a user interface language.

What is a project language?

The project language is the language that the TIA Portal uses to display user-defined project
texts as network comments and block comments.

You select project languages in the TIA Portal from the Tools > Project languages menu
command for the selected project in the project tree.

You can then configure user texts such as network comments and block comments in each
project language from the Tools > Project texts menu command. Then when you change the
TIA Portal user interface language, the network comments, block comments, and other
multilingual project texts display in the corresponding project language. You set the TIA
Portal user interface language from the Options > Settings project language menu
command.

Project languages and project texts are also configurable from the Languages & resources
node of the project tree.

The Web server can use one or two of the STEP 7 project languages for the display of
diagnostic buffer messages.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 175

Device configuration

6.8 Configuring the parameters of the modules

Project language correspondence to user interface language in the Web server

The Web server supports the same user interface languages as the TIA Portal; however, it
only supports up to two project languages. You can configure the Web server to use one of
two project languages for diagnostic buffer text entries depending on the user interface
language of the Web server. You configure these settings in the "Multilingual support"
properties in the device configuration of the CPU. (Network comments and block comments
and other multilingual texts are not visible from the Web server.)

|£‘,Properties E_"_i.lniu ||L Diagnostics |

| General | 10 tags | System constants | Texts
» General
- Multilingual support
» PROFINETinterface [X1] 9 PP
¥ DIT4iDQ 10 Project languages for download to the PLC
» ALZIAQ 2
» High speed counters (HSC) Assign project languages to the available languages on the CPU displayand Web
» FPulse generators (FTOIPW) SRIVEL:
S@rnup Note:
Cycle The project languages shown below will be downloaded to the PLC. The maximum of
Communication load downloadable languages is limited by the CPU.
Systemn and clock memory
- Wb cerrer Project languages are configured under Languages & Resources -> Project languages.
General

Automatic update "
o b Assign projectlangusge | Userinterface languages

User management

German (Germany) German

Watch tables R Englizh (United States)[= English
b Userdefined pages L English (United States) - French

Entry page " Mone Spanish

Overview of interfaces [English (United States) Italian
Multilingual support English (United States) Chinese (simplified)
Time of day

» Protection

Configuration control
Connection rescurces
Overview of addresses

In the Multilingual support properties, the user interface languages on the right are not
editable. They are the pre-defined languages that are available for both the TIA Portal and
for the Web server user interfaces. The "Assign project language" setting is configurable and
can be one of two of your configured project languages, or it can be "None". Because the
S7-1200 CPU only supports two project languages, you cannot configure the project
language to be the same as the user interface language for all of the supported user
interface languages.

In the configuration below, the Web server displays diagnostic buffer entries|(Page 1022) in
German when the Web server user interface is German, displays no texts for diagnostic
buffer events when the Web server user interface is Spanish, and displays diagnostic buffer
entries in English for all other languages.

S7-1200 Programmable controller
176 System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

6.8 Configuring the parameters of the modules

6.8 Configuring the parameters of the modules

To configure the operational parameters for the modules, select the module in the Device
view and use the "Properties" tab of the inspector window to configure the parameters for the
module.

Configuring a signal module (SM) or a signal board (SB)

The device configuration for signal modules and signal boards provides the means to
configure the following:

e Digital I/0: You can configure inputs for rising-edge detection or falling-edge detection
(associating each with an event and hardware interrupt) or for "pulse catch" (to stay on
after a momentary pulse) through the next update of the input process image. Outputs
can use a freeze or substitute value.

® Analog I/O: For individual inputs, configure parameters, such as measurement type
(voltage or current), range and smoothing, and to enable underflow or overflow
diagnostics. Analog outputs provide parameters such as output type (voltage or current)
and for diagnostics, such as short circuit (for voltage outputs) or upper/lower limit
diagnostics. You do not configure ranges of analog inputs and outputs in engineering
units on the Properties dialog. You must handle this in your program logic as described in
the topic "Processing of analog values (Page 123)".

® |/O addresses: You configure the start address for the set of inputs and outputs of the
module. You can also assign the inputs and outputs to a process image partition (PIPO,
PIP1, PIP2, PIP3, PIP4) or to automatically update, or to use no process image partition.
See|"Execution of the user program"|(Page 83) for an explanation of the process image
and process image partitions.

4 Propertles [MLinfa | % Diageostics

General
Genersl
w Dugeal sputs
Chanrell Input addressas

VD addresses

scamaddress: |4

Chanrell
B3 middresaes
Hardware idenifier

Dutput addresses

Start address; |4

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 177

Device configuration

6.8 Configuring the parameters of the modules

Configuring a communication interface (CM, CP or CB)
Depending on the type of communication interface, you configure the parameters for the

network.
——
| o Prepedties |"linto | L Diagnostics
Ganeral |
b General
1BLS ok
- PROFIBUS interiace o6l FROFIBLS address
Gereral Interface networked with
FROFEUS address
Dperating mode Subrst ot nenwoked |
Hardware identifier YT T —
Farameters
Address: 3 o)
a Highest address "

Trarsmission speed:

178

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration

6.9 Configuring the CPU for communication

6.9 Configuring the CPU for communication

The S7-1200 is designed to solve your communications and networking needs by supporting
not only the simplest of networks but also supporting more complex networks. The S7-1200
also provides tools that allow you to communicate with other devices, such as printers and
weigh scales which use their own communications protocols.

Project] > Devices & networks - X

& Topology view |gh Networkview |[[If Device view

THQ:" =

-

51: Metwork U Connections

Use the "Network view" of Device configuration to
create the network connections between the de-
vices in your project. After creating the network
connection, use the "Properties" tab of the inspec-
tor window to configure the parameters of the
network.

G |
b Ethermet addresses

Ethermnet addresses
Time smichronizabon
CparALAG Mo

Interface networked with

¥ Advanced oppons Subnet | Mot networked i

Hardware ideraifier

Add new zubnet
1P protocal
() %etIP address in the project
IPaddress | 197 . 168 2 10
Subnetmazk | 255, 255 IS5 O
[Use router
.
(7} setiP address using & dilerent method
PROFINET

[St FROFINET dervice name using & diflernt
Fnathod

[l Generate FROFINET device name automatically
FROFINET device name | ple_1
Camvenmed name: | plochd doed

Cevice nuember. |0 -

PLC1 PC2 Refer to "Creating a network connection”
NLIRLIC AR (Page|806) for further information.
| PNAE_1 |
| S froperties [P info | & Diagnostics | In the Properties window, select the "Ethernet
| General [i0tags | Tems | addresses" configuration entry. STEP 7 displays

the Ethernet address configuration dialog, which
associates the software project with the IP ad-
dress of the CPU that will receive that project.

Note: The S7-1200 CPU does not have a pre-
configured IP address. You must manually assign
an IP address for the CPU.

Refer to|"Assigning Internet Protocol (IP) address-
es"|(Page 810) for further information.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

179

Device configuration

6.10 Time synchronization

4 Froperties

General | Configuration
Commecoon premeter 8
BEsCh [aramELEr

General

End pont

waedace

Address
Connachon fpe

Conndetion datk

Addiess detaily

FRAF (A CH)
TRAFIC:

Conmection parameter

Tiinte L)L Disgnostics

Laal
act

U 214G DORDODC, I8 =

o)
9216801

PG TP

FLC_1_Bgcwss D8

(@) Enmablinh sctne
CONNETDSA

Lacal T34F

¥1.30.28 30 M

LTE -

P 1 214 € DODODC, 1 =
L] L]

19216004

1
- PLE 2 Sand 08 -

7 Evpalibah werve
ctmmection

Partnas TLAF
11.0¢1

E0.00 4% 5348 &8 68 S 4

For the TCP, 1ISO-on-TCP, and UDP Ethernet
protocols, use the "Properties" of the instruction
(TSEND_C, TRCV_C, or TCON) to configure the
"Local/Partner" connections.

The figure shows the "Connection properties" of
the "Configuration tab" for an ISO-on-TCP con-
nection.

Refer to "Configuring the Local/Partner connection
path"|(Page 807) for further information.

Estraded downlosd te device

Cargared wooe 1) esten of TLETT

ACADE D BRAR BTN 5 L BT

4200

Fiash LD

Bt B Bt
LU] UL 00D o W2

B L]

Tt addeny

PR ripdece for loddeng B Deied CoBl

L

Tt A T duacd

o

o Ut 8 001 1l AR

Lo Cwrsl

After completing the configuration, download the
project to the CPU. All IP addresses are config-
ured when you download the project.

Refer to|"Testing the PROFINET network"
(Page 819) for further information.

Note

To make a connection to your CPU, your network interface card (NIC) and the CPU must be
on the same class of network and on the same subnet. You can either set up your network
interface card to match the default IP address of the CPU, or you can change the IP address
of the CPU to match the network class and subnet of your network interface card.

Refer to "Assigning Internet Protocol (IP) addresses"|(Page 810) for information about how
to accomplish this.

180

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Device configuration
6.10 Time synchronization

6.10 Time synchronization

The objective of time synchronization of the time-of-day clocks is to have one master clock to
which all other local clocks are synchronized. Not only are the clocks synchronized initially,
but they are re-synchronized periodically to avoid the effects of drift over time.

In the case of the S7-1200 and its local base components, only the CPU and some of the CP
modules have time-of-day clocks that may need to be synchronized. In general, the CPU’s
time-of-day clock can be synchronized to an external master clock. The external master
clock might supply the time of day using an NTP server or through a CP in the local rack of
the S7-1200 that is connected to a SCADA system which includes a master clock.

Refer to S7-1200 CPs (https://support.industry.siemens.com/cs/us/en/ps) at Siemens
Industry Online Support, Product Support for further information on all S7-1200 CPs that
support the Time sychronization function.

Setting the time-of-day clock
There are three ways to set the time-of-day clock in the S7-1200 CPU:
® Using the NTP server|(Page 822)
e Using the Engineering System (ES)
® From the user program
e Using an HMI panel

You configure time synchronization of the CP modules to the CPU’s clock by selecting the
"CPU synchronizes the modules of the device." check box as shown in the following figure:

| & Properties *ilinfo 3| % Diagnostics

General ! I0 tags || Systemconstants | Texts |
b General

T ir
Time synchronization
~ PROFIMNET interface [X1] : ¥

General

Ethermet addresses [Enable time synchronization via NTF server

Time synchronization i pild ey

Operating mode

b A nted crire Server1: | 192 168 . D 10

Web terver access Server2: | 0 0 0 1]

Hardware identifier Server3: | 0 0 .0 &
¥ DIT4SIDO 10 =

Q . Serverd: (0 .0 .D 0D
FAL2IAG 2 |
Update mterval: |10 sec

¥ High speed counters (HSC) "
¥ Pulse generators (PTOIPWIG

Starmup [cPU synchranizes the modules of the device,
Cvcle

By default, neither time synchronization using the NTP server nor time synchronization of the
CP clocks to the CPU'’s clock is enabled.

You configure time synchronization of the CPU’s clock and time synchronization of the CP
clocks independently. Consequently, you can enable time synchronization of the CP clocks
by the CPU when the CPU’s clock is set by any internal or external method.

You can select the update interval using the NTP server. The update interval of the NTP
server is set to 10 seconds by default.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 181

https://support.industry.siemens.com/cs/us/en/ps

Device configuration

6.10 Time synchronization

182

When you activate time synchronization in a module, the Engineering Station (ES) prompts
you to select the "CPU synchronizes the modules of the device." if you have not already
selected the check box in the CPU’s "Time synchronization" dialog. The ES also warns you if
you configured more than one master clock source for time synchronization (for example,
you activated time synchronization on more than one CP or on both the CPU and a module).

Note

Activating time synchronization on a CP causes the CP to set the CPU’s clock. Selecting the
"CPU synchronizes the modules of the device" check box in the CPU’s "Time
synchronization" dialog causes the CP modules to automatically synchronize to the CPU’s
clock.

Note

You should assign only one time source for the control system.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

71 Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The
following general guidelines can apply to many design projects. Of course, you must follow
the directives of your own company's procedures and the accepted practices of your own
training and location.

Table 7- 1 Guidelines for designing a PLC system

Recommended steps

Tasks

Partition your process
or machine

Divide your process or machine into sections that have a level of independence from each other.
These partitions determine the boundaries between controllers and influence the functional de-
scription specifications and the assignment of resources.

Create the functional
specifications

Write the descriptions of operation for each section of the process or machine, such as the I/O
points, the functional description of the operation, the states that must be achieved before allow-
ing action for each actuator (such as a solenoid, a motor, or a drive), a description of the operator
interface, and any interfaces with other sections of the process or machine.

Design the safety cir-
cuits

Identify any equipment that might require hard-wired logic for safety. Remember that control
devices can fail in an unsafe manner, which can produce unexpected startup or change in the
operation of machinery. Where unexpected or incorrect operation of the machinery could result in
physical injury to people or significant property damage, consider the implementation of electro-
mechanical overrides (which operate independently of the PLC) to prevent unsafe operations.
The following tasks should be included in the design of safety circuits:

e |dentify any improper or unexpected operation of actuators that could be hazardous.

¢ Identify the conditions that would assure the operation is not hazardous, and determine how
to detect these conditions independently of the PLC.

¢ Identify how the PLC affects the process when power is applied and removed, and also iden-
tify how and when errors are detected. Use this information only for designing the normal and
expected abnormal operation. You should not rely on this "best case" scenario for safety pur-
poses.

¢ Design the manual or electromechanical safety overrides that block the hazardous operation
independent of the PLC.

e Provide the appropriate status information from the independent circuits to the PLC so that
the program and any operator interfaces have necessary information.

o Identify any other safety-related requirements for safe operation of the process.

Plan system security

Determine what level of| protection|(Page 210) you require for access to your process. You can
password-protect CPUs and program blocks from unauthorized access.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 183

Programming concepts

7.1 Guidelines for designing a PLC system

Recommended steps Tasks

Specify the operator Based on the requirements of the functional specifications, create the following drawings of the
stations operator stations:

e Overview drawing that shows the location of each operator station in relation to the process
or machine.

e Mechanical layout drawing of the devices for the operator station, such as display, switches,

and lights.
e Electrical drawings with the associated 1/0 of the PLC and signal modules.
Create the configura- Based on the requirements of the functional specification, create configuration drawings of the
tion drawings control equipment:

e Overview drawing that shows the location of each PLC in relation to the process or machine.

e Mechanical layout drawing of each PLC and any I/O modules, including any cabinets and
other equipment.

e Electrical drawings for each PLC and any I/0 modules, including the device model numbers,
communications addresses, and I/O addresses.

Create a list of symbol- | Create a list of symbolic names for the absolute addresses. Include not only the physical /0
ic names signals, but also the other elements (such as tag names) to be used in your program.

S7-1200 Programmable controller
184 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.2 Structuring your user program

7.2 Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the
program into code blocks:

® An organization block (OB) responds to a specific event in the CPU and can interrupt the
execution of the user program. The default for the cyclic execution of the user program
(OB 1) provides the base structure for your user program. If you include other OBs in your
program, these OBs interrupt the execution of OB 1. The other OBs perform specific
functions, such as for startup tasks, for handling interrupts and errors, or for executing
specific program code at specific time intervals.

e A function block (FB) is a subroutine that is executed when called from another code
block (OB, FB, or FC). The calling block passes parameters to the FB and also identifies
a specific data block (DB) that stores the data for the specific call or instance of that FB.
Changing the instance DB allows a generic FB to control the operation of a set of
devices. For example, one FB can control several pumps or valves, with different
instance DBs containing the specific operational parameters for each pump or valve.

e A function (FC) is a subroutine that is executed when called from another code block (OB,
FB, or FC). The FC does not have an associated instance DB. The calling block passes
parameters to the FC. The output values from the FC must be written to a memory
address or to a global DB.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK 185

Programming concepts

7.2 Structuring your user program

Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a
modular structure for creating your user program:

A linear program executes all of the instructions for your automation tasks in sequence,
one after the other. Typically, the linear program puts all of the program instructions into
the OB for the cyclic execution of the program (OB 1).

A modular program calls specific code blocks that perform specific tasks. To create a
modular structure, you divide the complex automation task into smaller subordinate tasks
that correspond to the technological functions of the process. Each code block provides
the program segment for each subordinate task. You structure your program by calling
one of the code blocks from another block.

Linear structure: Modular structure:
OB 1 o1 l—" ra1
1 < FC 1

«— —

By creating generic code blocks that can be reused within the user program, you can simplify
the design and implementation of the user program. Using generic code blocks has a
number of benefits:

186

You can create reusable blocks of code for standard tasks, such as for controlling a pump
or a motor. You can also store these generic code blocks in a library that can be used by
different applications or solutions.

When you structure the user program into modular components that relate to functional
tasks, the design of your program can be easier to understand and to manage. The
modular components not only help to standardize the program design, but can also help
to make updating or modifying the program code quicker and easier.

Creating modular components simplifies the debugging of your program. By structuring
the complete program as a set of modular program segments, you can test the
functionality of each code block as it is developed.

Creating modular components that relate to specific technological functions can help to
simplify and reduce the time involved with commissioning the completed application.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.3 Using blocks fo structure your program

7.3 Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You
then structure your program by having other code blocks call these reusable modules. The
calling block passes device-specific parameters to the called block.

When a code block calls another code block, the CPU executes the program code in the
called block. After execution of the called block is complete, the CPU resumes the execution
of the calling block. Processing continues with execution of the instruction that follows after

the block call.
®
OB, FB, FC OB, FB, FC

0 l ’

®e 0 %>

Calling block

Called (or interrupting) block

Program execution

Instruction or event that initiates the execution of
another block

Program execution

Block end (returns to calling block)

You can nest the block calls for a more modular structure. In the following example, the
nesting depth is 3: the program cycle OB plus 3 layers of calls to code blocks.

| @ Start of cycle

|
@ | &) |]
I > > ® Nesting depth
OB 1 FB1 [] FC1
|DB
FB 2 FB1 || FC 21
< A
| |oB
»> v
iR) FC1 DB 1

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

187

Programming concepts

7.3 Using blocks fo structure your program

7.3.1

188

Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between
the operating system and the user program. OBs are event driven. An event, such as a
diagnostic interrupt or a time interval, causes the CPU to execute an OB. Some OBs have
predefined start events and behavior.

The program cycle OB contains your main program. You can include more than one program
cycle OB in your user program. During RUN mode, the program cycle OBs execute at the
lowest priority level and can be interrupted by all other event types. The startup OB does not
interrupt the program cycle OB because the CPU executes the startup OB before going to
RUN mode.

After finishing the processing of the program cycle OBs, the CPU immediately executes the
program cycle OBs again. This cyclic processing is the "normal” type of processing used for
programmable logic controllers. For many applications, the entire user program is located in
a single program cycle OB.

You can create other OBs to perform specific functions, such as for handling interrupts and
errors, or for executing specific program code at specific time intervals. These OBs interrupt
the execution of the program cycle OBs.

Use the "Add new block" dialog to create new OBs in your user program.

Interrupt handling is always
Name event-driven. When such
et | aneventoccurs, the CPU
, l - Progran el Language: Lao - interrupts the execution of

& s Number [zl the user program and calls
j regnitkr :-:,u.t e O Menual the OB that was configured
I Hardware interrupt - ROIME B
: o o ki e to handle that event. After
& Ceegnostic esror infesrupt o H H
% ol SR AT S f|n|s_h|ng the.executlon of
S :i.:::l ;‘::mn failure -'-';'Og::h ‘?F*‘;'Eekr'::"”.'w L’{I"'-I;“y the |nterrupt|ng OB, the
i ey Bl S e e cseal CPU resumes the execu-
& Update your spplication. &nd call additional user t f th t
o blacks. ion o _ e u_ser prog_ram a
!E & vCantepalator the point of interruption.
S ve
Fmcean & W FreSern
& MCPosrSeno
Dam block
More.
¥ .Addilion.t! imformation
‘ [Add new and spen o Can<el

The CPU determines the order for handling interrupt events by priority. You can assign
multiple interrupt events to the same priority class. For more information, refer to the topics
on organization blocks|(Page 92) and execution of the user program (Page|83).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.3 Using blocks fo structure your program

Creating additional OBs

You can create multiple OBs for your user program, even for the program cycle and startup
OB events. Use the "Add new block" dialog to create an OB and enter a name for your OB.

If you create multiple program cycle OBs for your user program, the CPU executes each
program cycle OB in numerical sequence, starting with the program cycle OB with the lowest
number (such as OB 1). For example: after the first program cycle OB (such as OB 1)
finishes, the CPU executes the program cycle OB with the next higher number.

Configuring the properties of an OB

You can modify the properties of an OB. For example, you can configure the OB number or
programming language.

General

General
General

Infarmation
fime =tamps

Compdation Marne, Tirme delsy nterpt
Pribe ciwn

Constant name: OB Tene delay intesrupt
Abtributes 5

Type. (OB
Mumber; | 20

Event class: | Time delay nternipe

Language: LAD Tw
Process image part number

L L=

Note

Note that you can assign a process image part number to an OB that corresponds to PIPO,
PIP1, PIP2, PIP3, or PIP4. If you enter a number for the process image part number, the
CPU creates that process image partition. See the topic "Execution of the user program
(Page 83)" for an explanation of the process image partitions.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 189

Programming concepts

7.3 Using blocks fo structure your program

7.3.2 Function (FC)

A function (FC) is a code block that typically performs a specific operation on a set of input
values. The FC stores the results of this operation in memory locations. For example, use
FCs to perform standard and reusable operations (such as for mathematical calculations) or
technological functions (such as for individual controls using bit logic operations). An FC can
also be called several times at different points in a program. This reuse simplifies the
programming of frequently recurring tasks.

An FC does not have an associated instance data block (DB). The FC uses the local data
stack for the temporary data used to calculate the operation. The temporary data is not
saved. To store data permanently, assign the output value to a global memory location, such
as M memory or to a global DB.

7.3.3 Function block (FB)

A function block (FB) is a code block that uses an instance data block for its parameters and
static data. FBs have variable memory that is located in a data block (DB), or "instance" DB.
The instance DB provides a block of memory that is associated with that instance (or call) of
the FB and stores data after the FB finishes. You can associate different instance DBs with
different calls of the FB. The instance DBs allow you to use one generic FB to control
multiple devices. You structure your program by having one code block make a call to an FB
and an instance DB. The CPU then executes the program code in that FB, and stores the
block parameters and the static local data in the instance DB. When the execution of the FB
finishes, the CPU returns to the code block that called the FB. The instance DB retains the
values for that instance of the FB. These values are available to subsequent calls to the
function block either in the same scan cycle or other scan cycles.

Reusable code blocks with associated memory

You typically use an FB to control the operation for tasks or devices that do not finish their
operation within one scan cycle. To store the operating parameters so that they can be
quickly accessed from one scan to the next, each FB in your user program has one or more
instance DBs. When you call an FB, you also specify an instance DB that contains the block
parameters and the static local data for that call or "instance" of the FB. The instance DB
maintains these values after the FB finishes execution.

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by
selecting different instance DBs for different calls of the FB.

An FB stores the Input, Output, and InOut, and Static parameters in an instance DB.

You can also modify and download the function block interface in RUN mode|(Page|1341).

S7-1200 Programmable controller
190 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.3 Using blocks fo structure your program

Assigning the start value in the instance DB

The instance DB stores both a default value and a start value for each parameter. The start
value provides the value to be used when the FB is executed. The start value can then be
modified during the execution of your user program.

The FB interface also provides a "Default value" column that allows you to assign a new start
value for the parameter as you are writing the program code. This default value in the FB is
then transferred to the start value in the associated instance DB. If you do not assign a new
start value for a parameter in the FB interface, the default value from instance DB is copied
to start value.

Using a single FB with DBs

The following figure shows an OB that calls one FB three times, using a different data block
for each call. This structure allows one generic FB to control several similar devices, such as
motors, by assigning a different instance data block for each call for the different devices.
Each instance DB stores the data (such as speed, ramp-up time, and total operating time)
for an individual device.

DB 201

OB1
FB 22
FB 22, DB 201 ’%
FB 22, DB 202
FB 22, DB 203
DB 203

In this example, FB 22 controls three separate devices, with DB 201 storing the operational
data for the first device, DB 202 storing the operational data for the second device, and DB
203 storing the operational data for the third device.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 191

Programming concepts

7.3 Using blocks fo structure your program

7.3.4 Data block (DB)

You create data blocks (DB) in your user program to store data for the code blocks. All of the
program blocks in the user program can access the data in a global DB, but an instance DB
stores data for a specific function block (FB).

The data stored in a DB is not deleted when the execution of the associated code block
comes to an end. There are two types of DBs:

® A global DB stores data for the code blocks in your program. Any OB, FB, or FC can
access the data in a global DB.

® Aninstance DB stores the data for a specific FB. The structure of the data in an instance
DB reflects the parameters (Input, Output, and InOut) and the static data for the FB. (The
Temp memory for the FB is not stored in the instance DB.)

Note

Although the instance DB reflects the data for a specific FB, any code block can access
the data in an instance DB.

You can also|modify and download data blocks in RUN mode|(Page 1341).

Read-only data blocks
You can configure a DB as being read-only:
1. Right-click the DB in the project navigator and select "Properties" from the context menu.
2. In the "Properties" dialog, select "Attributes".

3. Select the "Data block write-protected in the device" option and click "OK".

S7-1200 Programmable controller
192 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.3 Using blocks fo structure your program

Optimized and standard data blocks

You can also configure a data block to be either standard or optimized. A standard DB is
compatible with STEP 7 Classic programming tools and the classic S7-300 and S7-400
CPUs. Data blocks with optimized access have no fixed defined structure. The data
elements contain only a symbolic name in the declaration and no fixed address within the
block. The CPU stores the elements automatically in the available memory area of the block
so that there are no gaps in the memory. This makes for optimal use of the memory
capacity.

To set optimized access for a data block, follow these steps:

1. Expand the program blocks folder in the STEP 7 project tree.

2. Right-click the data block and select "Properties" from the context menu.
3. For the attributes, select "Optimized block access".

Note that optimized block access is the default for new data blocks. If you deselect
"Optimized block access", the block uses standard access.

Note
Block access type for an FB and its instance DB

Be sure that if your FB setting is "Optimized block access" then the setting of the instance
DB for that FB is also "Optimized block access". Similarly if you have not selected
"Optimized block access" for the FB such that the FB is of type standard access, then be
sure that the instance DB is also standard, or not optimized block access.

If you do not have compatible block access types, then changes to the INJOUT parameter
values of the FB from an HMI during execution of the FB could be lost.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 193

Programming concepts

7.3 Using blocks fo structure your program

7.3.5 Creating reusable code blocks
Use the "Add new block"
Hame dialog under "Program
Sl blocks" in the Project navi-
Langusge: saL = gator to create OBs, FBs,
= - N FCs, and global DBs.
i g;:mlm When you create a code
' block, you select the pro-
i; s gramming language for the
Function blocks are code blocks that stare their values pernanently in nstance data blacks, block. YOU dO nOt Se|eCt a
Functian hlock s that they rermain svadable after the block has been execuged
language for a DB because
. it only stores data.
t Selecting the "Add new
e and open" check box (de-
fault) opens the code block
& in the Project view.
Data block
i) Additional information
o] Add new and open IS—— Cancel
You can store objects you want to reuse in libraries. For each project, there is a project
library that is connected to the project. In addition to the project library, you can create any
number of global libraries that can be used over several projects. Since the libraries are
compatible with each other, library elements can be copied and moved from one library to
another.
Libraries are used, for example, to create templates for blocks that you first paste into the
project library and then further develop there. Finally, you copy the blocks from the project
library to a global library. You make the global library available to other colleagues working
on your project. They use the blocks and further adapt them to their individual requirements,
where necessary.
For details about library operations, refer to the STEP 7 online Help library topics.
S7-1200 Programmable controller
194 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.3.6

Call-by-value

Call-by-reference

7.3 Using blocks fo structure your program

Passing parameters to blocks

Function Blocks (FB) and Functions (FC) have three different interface types:
e IN

e [N/OUT

e OUT

FBs and FCs receive parameters through the IN and IN/OUT interface types. The blocks
process the parameters and return values to the caller through the IN/OUT and OUT
interface types.

The user program transfers parameters using one of two methods.

When the user program passes a parameter to a function as "call-by-value", the user
program copies the actual parameter value into the input parameter of the block for the IN
interface type. This operation requires additional memory for the copied value.

When the user program calls the block, it copies the values.

When the user program passes a parameter to a function as "call-by-reference", the user
program references the address of the actual parameter for the IN/OUT interface type and
does not copy the value. This operation does not require additional memory.

"My_string"
value: 'test'

When the user program calls the block, it references the address of the actual parameters.

Note

Generally, use the IN/OUT interface type for structured tags (for example, ARRAY,
STRUCT, and STRING) in order to avoid increasing the required data memory
unnecessarily.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 195

Programming concepts

7.3 Using blocks fo structure your program

Block optimization and passing parameters

The user program passes FC parameters as "call-by-value" for simple data types (for
example, INT, DINT, and REAL). It passes complex data types (for example, STRUCT,
ARRAY, and STRING) as "call-by-reference".

The user program normally passes FB parameters in the instance Data block (DB)
associated with the FB:

® The user program passes simple data types (for example, INT, DINT, and REAL) as "call-
by-value" by copying the parameters to/from the instance DB.

® The user program copies complex data types (for example, STRUCT, ARRAY, and
STRING) to and from the instance DB for IN and OUT parameter types.

® The user program passes complex data types as "call-by-reference" for the IN/OUT
interface type.

DBs can be created as either "Optimized" or "Standard" (non-optimized). The optimized data
blocks are more compact than the non-optimized data blocks. Also, the ordering of the data
elements within the DB is different for optimized versus non-optimized DBs. Refer to the
"Optimized blocks" section of the S7-Programming Guideline for S7-1200/1500, STEP 7 (TIA
Portal), 03/2014 (http://support.automation.siemens.com/WW/view/en/81318674) for a
discussion of optimized blocks.

You create FBs and FCs to process either optimized or non-optimized data. You can select
the "Optimized block access" check box as one of the attributes for the block. The user
program optimizes program blocks by default, and the program blocks expect data passed to
the block to be in the optimized format.

When the user program passes a complex parameter (for example, a STRUCT) to a
function, the system checks the optimization setting of the data block containing the structure
and the optimization setting of the program block. If you optimize both the data block and the
function, then the user program passes the STRUCT as a "call-by-reference". The same is
true if you select non-optimized for both the data block and the function.

However, if you make the function and data block optimization different (meaning that you
optimized one block and not the other block), the STRUCT must be converted to the format
expected by the function. For example, if you select non-optimized for the data block and
optimized for the function, then a STRUCT in the data block must be converted to an
optimized format before the function can process the STRUCT. The system does this
conversion by making a "copy" of the STRUCT and converting it to the optimized format that
the function expects.

In summary, when the user program passes a complex data type (for example, a STRUCT)
to a function as an IN/OUT parameter, the function expects the user program to pass the
STRUCT as a "call-by-reference":

e [f you select optimized or non-optimized for both the data block containing the STRUCT
and the function, the user program passes the data as "call-by-reference".

e |f you do not configure the data block and the function with the same optimization settings
(one is optimized and the other is non-optimized), the system must make a copy of the
STRUCT before passing it to the function. Because the system has to make this copy of
the structure, this converts the "call-by-reference", effectively, into a "call-by-value".

S7-1200 Programmable controller
196 System Manual, V4.2, 09/2016, ASE02486680-AK

http://support.automation.siemens.com/WW/view/en/81318674

Programming concepts

7.3 Using blocks fo structure your program

Effect of optimization settings on user programs

The copying of the parameter can cause an issue in a user program if an HMI or interrupt
OB modifies elements of the structure. For example, there is an IN/OUT parameter of a
function (normally passed as "call-by-reference"), but the optimization settings of the data
block and function are different:

1.

When the user program is ready to call the function, the system must make a "copy" of
the structure to change the format of the data to match the function.

. The user program calls the function with a reference to the "copy" of the structure.

An interrupt OB occurs while the function is executing, and the interrupt OB changes a
value in the original structure.

The function completes and, since the structure is an IN/OUT parameter, the system
copies the values back to the original structure in the original format.

The effect of making the copy of the structure to change the format is that the data written by
the interrupt OB is lost. The same can happen when writing a value with an HMI. The HMI
can interrupt the user program and write a value in the same manner as an interrupt OB.

There are multiple ways to correct this issue:

The best solution for this this issue is to match the optimization settings of the program
block and the data block when using complex data types (for example, a STRUCT). This
ensures that the user program always passes the parameters as "call-by-reference".

Another solution is that an interrupt OB or HMI does not directly modify an element in the
structure. The OB or HMI can modify another variable, and then you can copy this
variable into the structure at a specific point in the user program.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 197

Programming concepts

7.4 Understanding data consistency

7.4

198

Understanding data consistency

The CPU maintains the data consistency for all of the elementary data types (such as Words
or DWords) and all of the system-defined structures (for example, IEC_TIMERS or DTL).
The reading or writing of the value cannot be interrupted. (For example, the CPU protects
the access to a DWord value until the four bytes of the DWord have been read or written.) To
ensure that the program cycle OBs and the interrupt OBs cannot write to the same memory
location at the same time, the CPU does not execute an interrupt OB until the read or write
operation in the program cycle OB has been completed.

If your user program shares multiple values in memory between a program cycle OB and an
interrupt OB, your user program must also ensure that these values are modified or read
consistently. You can use the DIS_AIRT (disable alarm interrupt) and EN_AIRT (enable
alarm interrupt) instructions in your program cycle OB to protect any access to the shared
values.

e |Insert a DIS_AIRT instruction in the code block to ensure that an interrupt OB cannot be
executed during the read or write operation.

® Insert the instructions that read or write the values that could be altered by an interrupt
OB.

e |Insert an EN_AIRT instruction at the end of the sequence to cancel the DIS_AIRT and
allow the execution of the interrupt OB.

A communication request from an HMI device or another CPU can also interrupt execution of
the program cycle OB. The communication requests can also cause problems with data
consistency. The CPU ensures that the elementary data types are always read and written
consistently by the user program instructions. Because the user program is interrupted
periodically by communications, it is not possible to guarantee that multiple values in the
CPU will all be updated at the same time by the HMI. For example, the values displayed on a
given HMI screen could be from different scan cycles of the CPU.

The PtP (Point-to-Point) instructions, PROFINET instructions (such as TSEND_C and
TRCV_C),|PROFINET Distributed 1/O instructions|(Page 384), and PROFIBUS Distributed
I/O Instructions (Page 384) transfer buffers of data that could be interrupted. Ensure the data
consistency for the buffers of data by avoiding any read or write operation to the buffers in
both the program cycle OB and an interrupt OB. If it is necessary to modify the buffer values
for these instructions in an interrupt OB, use a DIS_AIRT instruction to delay any interruption
(an interrupt OB or a communication interrupt from an HMI or another CPU) until an
EN_AIRT instruction is executed.

Note

The use of the DIS_AIRT instruction delays the processing of interrupt OBs until the
EN_AIRT instruction is executed, affecting the interrupt latency (time from an event to the
time when the interrupt OB is executed) of your user program.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.5 Programming language

7.5 Programming language
STEP 7 provides the following standard programming languages for S7-1200:

e |AD (ladder logic) is a graphical programming language. The representation is based on
circuit diagrams|(Page|199).

e FBD (Function Block Diagram) is a programming language that is based on the graphical
logic symbols used in Boolean algebra (Page 200).

e SCL (structured control language) is a text-based, high-level programming language
(Page|201).

When you create a code block, you select the programming language to be used by that
block.

Your user program can utilize code blocks created in any or all of the programming
languages.

7.51 Ladder logic (LAD)

The elements of a circuit diagram, such as normally closed and normally open contacts, and
coils are linked to form networks.

Y

To create the logic for complex operations, you can insert branches to create the logic for
parallel circuits. Parallel branches are opened downwards or are connected directly to the
power rail. You terminate the branches upwards.

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and
move.

STEP 7 does not limit the number of instructions (rows and columns) in a LAD network.

Note

Every LAD network must terminate with a coil or a box instruction.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 199

Programming concepts

7.5 Programming language

Consider the following rules when creating a LAD network:

® You cannot create a branch that could result in a power flow in the reverse direction.

A B C D 4
I | | | | | | e
[11 [[\)
E F
I X|I
11 I
-
H G
I |
1

A B C 4
| | | | e
)

7.5.2 Function Block Diagram (FBD)

Like LAD, FBD is also a graphical programming language. The representation of the logic is
based on the graphical logic symbols used in Boolean algebra.

. To create the logic for complex operations,
"Start” — 3 insert parallel branches between the boxes.

"ON" ——f —_— "On”

n
-

"Stop” -0 sp —_— _—

Mathematical functions and other complex functions can be represented directly in
conjunction with the logic boxes.

STEP 7 does not limit the number of instructions (rows and columns) in an FBD network.

S7-1200 Programmable controller
200 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.5 Programming language

7.5.3 SCL

Structured Control Language (SCL) is a high-level, PASCAL-based programming language
for the SIMATIC S7 CPUs. SCL supports the block structure of STEP 7|(Page 187). Your
project can include program blocks in any of the three programming languages: SCL, LAD,
and FBD.

SCL instructions use standard programming operators, such as for assignment (:=),
mathematical functions (+ for addition, - for subtraction, * for multiplication, and / for division).
SCL also uses standard PASCAL program control operations, such as IF-THEN-ELSE,
CASE, REPEAT-UNTIL, GOTO and RETURN. You can use any PASCAL reference for
syntactical elements of the SCL programming language. Many of the other instructions for
SCL, such as timers and counters, match the LAD and FBD instructions. For more
information about specific instructions, refer to the specific instructions in the chapters for
Basic instructions (Page|227) and|Extended instructions |(Page|335).

7.5.3.1 SCL program editor

You can designate any type of block (OB, FB, or FC) to use the SCL programming language
at the time you create the block. STEP 7 provides an SCL program editor that includes the
following elements:

® Interface section for defining the parameters of the code block
® Code section for the program code
® |Instruction tree that contains the SCL instructions supported by the CPU

You enter the SCL code for your instruction directly in the code section. The editor includes
buttons for common code constructs and comments. For more complex instructions, simply
drag the SCL instructions from the instruction tree and drop them into your program. You can
also use any text editor to create an SCL program and then import that file into STEP 7.

Function_1
Name Data type Comment
* Input
L] StartStopSwitch Bool
» Output

Wk -

L] RunyYesMo Bool
InDut

* Temp

~ Constant

| | <A0d news
+ Return
L] Function_1 Void !E'

K| -

gl alglesdnd
1

|F.. CASE.. FOR.. WHILE. . .
= | oF:iToBOd D0 |

1 BIF THEN

2 f/ Statement secticno IF

4 |END IF;

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 201

Programming concepts

7.5 Programming language

In the Interface section of the SCL code block you can declare the following types of
parameters:

e |nput, Output, INOut, and Ret_Val: These parameters define the input tags, output tags,
and return value for the code block. The tag name that you enter here is used locally
during the execution of the code block. You typically would not use the global tag name in
the tag table.

e Static (FBs only; the illustration above is for an FC): The code block uses static tags for
storage of static intermediate results in the instance data block. The block retains static
data until overwritten, which can be after several cycles. The names of the blocks, which
this block calls as multi-instance, are also stored in the static local data.

e Temp: These parameters are the temporary tags that are used during the execution of
the code block.

e Constant: These are named constant values for your code block.

If you call the SCL code block from another code block, the parameters of the SCL code
block appear as inputs or outputs.

i ENO/
“Start"* < StatStopSeatch RurivesMoH “On"

In this example, the tags for "Start" and "On" (from the project tag table) correspond to
"StartStopSwitch" and "RunYesNo" in the declaration table of the SCL program.

7.5.3.2 SCL expressions and operations

Constructing an SCL expression

An SCL expression is a formula for calculating a value. The expression consists of operands
and operators (such as *, /, + or -). The operands can be tags, constants, or expressions.

The evaluation of the expression occurs in a certain order, which is defined by the following
factors:

® Every operator has a pre-defined priority, with the highest-priority operation performed
first.

e For operators with equal priority, the operators are processed in a left-to-right sequence.

® You use parentheses to designate a series of operators to be evaluated together.

S7-1200 Programmable controller
202 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.5 Programming language

The result of an expression can be used either for assigning a value to a tag used by your
program, as a condition to be used by a control statement, or as parameters for another SCL
instruction or for calling a code block.

Table 7-2 Operators in SCL

Type

Operation

Operator

Priority

Parentheses

(Expression)

()

Math

Power

*%

Sign (unary plus)

+

Sign (unary minus)

Multiplication

Division

Modulo

Addition

Subtraction

Comparison

Less than

Less than or equal to

Greater than

Greater than or equal to

Equal to

Not equal to

<>

Bit logic

Negation (unary)

NOT

AND logic operation

AND or &

Exclusive OR logic operation

XOR

OR logic operation

OR

Assignment

Assignment

_ a2l WIN|IN|/Ooooojajg | (AR IWOWIN |-

0
1

As a high-level programming language, SCL uses standard statements for basic tasks:

® Assignment statement: :=

o Mathematical functions: +, -, *, and /

® Addressing of global variables (tags): "<tag name>" (Tag name or data block name
enclosed in double quotes)

® Addressing of local variables: #<variable name> (Variable name preceded by "#" symbol)

The following examples show different expressions for different uses:

"C" = #A+#B; Assigns the sum of two local variables to a tag
"Data_block 1".Tag := #A; Assignment to a data block tag

IF #A > #B THEN "C" := #A; Condition for the IF-THEN statement

"C" := SQRT (SQR (#A) + SQR (#B)); Parameters for the SQRT instruction

Arithmetic operators can process various numeric data types. The data type of the result is
determined by the data type of the most-significant operands. For example, a multiplication
operation that uses an INT operand and a REAL operand yields a REAL value for the result.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

203

Programming concepts

7.5 Programming language

Control statements

Conditions

204

A control statement is a specialized type of SCL expression that performs the following
tasks:

® Program branching

® Repeating sections of the SCL program code
e Jumping to other parts of the SCL program

e Conditional execution

The SCL control statements include IF-THEN, CASE-OF, FOR-TO-DO, WHILE-DO,
REPEAT-UNTIL, CONTINUE, GOTO, and RETURN.

A single statement typically occupies one line of code. You can enter multiple statements on
one line, or you can break a statement into several lines of code to make the code easier to
read. Separators (such as tabs, line breaks and extra spaces) are ignored during the syntax
check. An END statement terminates the control statement.

The following examples show a FOR-TO-DO control statement. (Both forms of coding are
syntactically valid.)
FOR x := 0 TO max DO sum := sum + value(x); END_FOR;
FOR x := 0 TO max DO
sum := sum + value (x);
END_FOR;

A control statement can also be provided with a label. A label is set off by a colon at the

beginning of the statement:
Label: <Statement>;

The STEP 7 online help provides a complete SCL programming language reference.

A condition is a comparison expression or a logical expression whose result is of type BOOL
(with the value of either TRUE or FALSE). The following example shows conditions of
various types:

#Temperature > 50 Relational expression
#Counter <= 100

#CHARL < 'S’
(#Alpha <> 12) AND NOT #Beta Comparison and logical expression
5 + #Alpha Arithmetic expression

A condition can use arithmetic expressions:
® The condition of the expression is TRUE if the result is any value other than zero.

® The condition of the expression is FALSE if the result equals zero.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.5 Programming language

Calling other code blocks from your SCL program

To call another code block in your user program, simply enter the name (or absolute
address) of the FB or FC with the parameters. For an FB, you must provide the instance DB
to be called with the FB.

<DB name> (Parameter list) Call as a single instance

<#Instance name> (Parameter list) Call as multi-instance
"MyDB" (MyInput:=10, MyInOut:="Tagl");

<FC name> (Parameter list) Standard call

<Operand>:=<FC name> (Parameter list) Callin an expression
"MyFC" (MyInput:=10, MyInOut:="Tagl") ;

You can also drag blocks from the navigation tree to the SCL program editor, and complete
the parameter assignment.

Adding block comments to SCL code

You can include a block comment in your SCL code by including the comment text between
(* and *). You can have any number of comment lines between the (* and the *). Your SCL

program block can include many block comments. For programming convenience, the SCL
editor includes a block comment button along with common control statements:

CAZE... FOR... WHILE..

IF... OF.. TODO. DO..

..

Addressing

As with LAD and FBD, SCL allows you to use either tags (symbolic addressing) or absolute
addresses in your user program. SCL also allows you to use a variable as an array index.

Absolute addressing

$10.0 Precede absolute addresses with the "%" symbol.
$MB100 Without the "%", STEP 7 generates an undefined
tag error at compile time.

Symbolic addressing

"PLC_Tag_1" Tag in PLC tag table
"Data block_1".Tag_l Tag in a data block
"Data block 1".MyArray[#i] Array element in a data block array

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 205

Programming concepts

7.5 Programming language

7.5.3.3 Indexed addressing with PEEK and POKE instructions

SCL provides PEEK and POKE instructions that allow you to read from or write to data
blocks, 1/0, or memory. You provide parameters for specific byte offsets or bit offsets for the
operation.

Note

To use the PEEK and POKE instructions with data blocks, you must use standard (not
optimized) data blocks. Also note that the PEEK and POKE instructions merely transfer data.
They have no knowledge of data types at the addresses.

PEEK (area:=_in , Reads the byte referenced by byteOffset of
dbNumber:=_in_, the referenced data block, 1/0 or memory
byteOffset:= in); area.

Example referencing data block:

$MB100 := PEEK (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Example referencing IB3 input:

$MB100 := PEEK (area:=16#81,
dbNumber:=0, byteOffset:=#i); // when

#i =3
PEEK_WORD (area:=_in_, Reads the word referenced by byteOffset of
dbNumber:=_in_, the referenced data block, 1/0 or memory
byteOffset:=_in_); area.
Example:
$MW200 := PEEK WORD (area:=16#84,
dbNumber:=1, byteOffset:=#i)
PEEK_DWORD (area:=_in_, Reads the double word referenced by
dbNumber:=_in_, byteOffset of the referenced data block, 1/0 or
byteOffset:= in); memory area.
Example:
$MD300 := PEEK DWORD (area:=16#84,
dbNumber:=1, byteOffset:=#i)
PEEK_BOOL (area:=_in_, Reads a Boolean referenced by the bitOffset
dbNumber:=_in_, and byteOffset of the referenced data block,
byteOffset:=_in , I/O or memory area
bitOffset:=_in); Example:

$MB100.0 := PEEK BOOL (area:=16#84,
dbNumber:=1, byteOffset:=#ii,
bitOffset:=#j) ;

S7-1200 Programmable controller
206 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

POKE (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
value:=_in);

POKE_BOOL (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
bitOffset:=_in_,
value:=_in_);

POKE BLK (area_src:=_in_,

dbNumber_ src:= in_,
byteOffset_src:= in_,
area dest:=_in ,
dbNumber dest:=_in_,
byteOffset _dest:=_in_,
count:= in);

7.5 Programming language

Writes the value (Byte, Word, or DWord) to
the referenced byteOffset of the referenced
data block, I/O or memory area

Example referencing data block:

POKE (area:=16#84, dbNumber:=2,
byteOffset:=3, value:="Tag 1");
Example referencing QB3 output:

POKE (area:=16#82, dbNumber:=0,
byteOffset:=3, value:="Tag 1");
Writes the Boolean value to the referenced
bitOffset and byteOffset of the referenced
data block, I/O or memory area

Example:

POKE_BOOL (area:=16#84, dbNumber:=2,
byteOffset:=3, bitOffset:=5, val-
ue:=0) ;

Writes "count" number of bytes starting at the
referenced byte Offset of the referenced
source data block, I/O or memory area to the
referenced byteOffset of the referenced desti-
nation data block, I/O or memory area

Example:

POKE_BLK (area_src:=16#84,

dbNumber src:=#src_db, byteOff-
set_src:=f#src_byte, area dest:=16#84,
dbNumber dest:=#src_db, byteOff-

set dest:=#src byte, count:=10);

For PEEK and POKE instructions, the following values for the "area", "area_src" and
"area_dest" parameters are applicable. For areas other than data blocks, the dbNumber
parameter must be 0.

16#81 |
16#82 Q
16#83 M
16#84 DB

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

207

Programming concepts

7.5 Programming language

7.5.4 EN and ENO for LAD, FBD and SCL

Determining "power flow" (EN and ENO) for an instruction

Certain instructions (such as the Math and the Move instructions) provide parameters for EN
and ENO. These parameters relate to power flow in LAD or FBD and determine whether the
instruction is executed during that scan. SCL also allows you to set the ENO parameter for a
code block.

e EN (Enable In) is a Boolean input. Power flow (EN = 1) must be present at this input for
the box instruction to be executed. If the EN input of a LAD box is connected directly to
the left power rail, the instruction will always be executed.

¢ ENO (Enable Out) is a Boolean output. If the box has power flow at the EN input and the
box executes its function without error, then the ENO output passes power flow
(ENO = 1) to the next element. If an error is detected in the execution of the box
instruction, then power flow is terminated (ENO = 0) at the box instruction that generated
the error.

Table 7-3 Operands for EN and ENO

Program editor Inputs/outputs Operands Data type

LAD EN, ENO Power flow Bool

FBD EN I, I:P, Q, M, DB, Temp, Power Flow Bool
ENO Power Flow Bool

SCL EN? TRUE, FALSE Bool
ENO?2 TRUE, FALSE Bool

' The use of EN is only available for FBs.

2 The use of ENO with the SCL code block is optional. You must configure the SCL compiler to set
ENO when the code block finishes.

Configuring SCL to set ENO
To configure the SCL compiler for setting ENO, follow these steps:
1. Select the "Settings" command from the "Options" menu.

2. Expand the "PLC programming" properties and select "SCL (Structured Control
Language)".

3. Select the "Set ENO automatically" option.

S7-1200 Programmable controller
208 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.5 Programming language

Using ENO in program code

You can also use ENO in your program code, for example by assigning ENO to a PLC tag,
or by evaluating ENO in a local block.

Examples:
“MyFunction”
(IN1 := .. ,
IN2 := ,

OUT1 => #myOut,
ENO => j#statusFlag); // PLC tag statusFlag holds the value of E
NO

“MyFunction”
(IN1 := ..
IN2 := .. ,
OUT1 => #myOut,
ENO => ENO); // block status flag of "MyFunction"
// is stored in the local block

IF ENO = TRUE THEN
// execute code only if MyFunction returns true ENO

Effect of Ret_Val or Status parameters on ENO

Some instructions, such as the communication instructions or the string conversion
instructions, provide an output parameter that contains information about the processing of
the instruction. For example, some instructions provide a Ret_Val (return value) parameter,
which is typically an Int data type that contains status information in a range from -32768 to
+32767. Other instructions provide a Status parameter, which is typically a Word data type
that stores status information in a range of hexadecimal values from 16#0000 to 16#FFFF.
The numerical value stored in a Ret_Val or a Status parameter determines the state of ENO
for that instruction.

e Ret Val: A value from 0 to 32767 typically sets ENO = 1 (or TRUE). A value from -32768
to -1 typically sets ENO = 0 (or FALSE). To evaluate Ret_Val, change the representation
to hexadecimal.

e Status: A value from 16#0000 16#7FFF typically sets ENO = 1 (or TRUE). A value from
16#8000 to 16#FFFF typically sets ENO = 0 (or FALSE).

Instructions that take more than one scan to execute often provide a Busy parameter (Bool)
to signal that the instruction is active but has not completed execution. These instructions
often also provide a Done parameter (Bool) and an Error parameter (Bool). Done signals that
the instruction was completed without error, and Error signals that the instruction was
completed with an error condition.

® When Busy =1 (or TRUE), ENO = 1 (or TRUE).
® When Done = 1 (or TRUE), ENO = 1 (or TRUE).
® When Error = 1 (or TRUE), ENO = 0 (or FALSE).

See also
OK (Check validity) and NOT_OK (Check invalidity) |(Page 252)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 209

Programming concepts

7.6 Protection
7.6 Protection
7.6.1 Access protection for the CPU

The CPU provides four levels of security for restricting access to specific functions. When
you configure the security level and password for a CPU, you limit the functions and memory
areas that can be accessed without entering a password.

Each level allows certain functions to be accessible without a password. The default
condition for the CPU is to have no restriction and no password-protection. To restrict access
to a CPU, you configure the properties of the CPU and enter the password.

Entering the password over a network does not compromise the password protection for the
CPU. Password protection does not apply to the execution of user program instructions
including communication functions. Entering the correct password provides access to all of
the functions at that level.

PLC-to-PLC communications (using communication instructions in the code blocks) are not
restricted by the security level in the CPU.

Table 7-4 Security levels for the CPU

Security level Access restrictions

Full access (no Allows full access without password protection.

protection)

Read access Allows HMI access, comparing Offline/Online code blocks, and all forms of PLC-

to-PLC communications without password protection.

Password is required for modifying (writing to) the CPU. Password is not re-
quired for changing the CPU mode (RUN/STOP).

HMI access Allows HMI access and all forms of PLC-to-PLC communications without pass-
word protection.

Password is required for reading the data in the CPU, for comparing Of-
fline/Online code blocks, for modifying (writing to) the CPU, and for changing the
CPU mode (RUN/STOP).

No access (com- Allows no access without password protection.
plete protection)

Password is required for HMI access, reading the data in the CPU, comparing
Offline/Online code blocks, and for modifying (writing to) the CPU.

S7-1200 Programmable controller
210 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.6 Protection

Passwords are case-sensitive. To configure the protection level and passwords, follow these
steps:

1. In the "Device configuration”, select the CPU.
2. In the inspector window, select the "Properties" tab.

3. Select the "Protection" property to select the protection level and to enter passwords.

Protection

Protection

Selecethe access level for the PLC

Access level ACTESS ACCESS PEIISSIon
Hll Read Wirine: Fasswaord Confirrmation
() Full aceess (o protection)

Read access

4“4
L4
H

........

f;'l HMWIl access
) Mo access (complete protection)

When you download this configuration to the CPU, the user has HMI access and can access
HMI functions without a password. To read data or compare Offline/Online code blocks, the

user must enter the configured password for "Read access" or the password for "Full access
(no protection)". To write data, the user must enter the configured password for "Full access
(no protection)".

A WARNING

Unauthorized access to a protected CPU

Users with CPU full access privileges have privileges to read and write PLC variables.
Regardless of the access level for the CPU, Web server users can have privileges to read
and write PLC variables. Unauthorized access to the CPU or changing PLC variables to
invalid values could disrupt process operation and could result in death, severe personal
injury and/or property damage.

Authorized users can perform operating mode changes, writes to PLC data, and firmware
updates. Siemens recommends that you observe the following security practices:

e Password protect CPU access levels and Web server user IDs (Page 1005) with strong
passwords. Strong passwords are at least ten characters in length, mix letters, numbers,
and special characters, are not words that can be found in a dictionary, and are not
names or identifiers that can be derived from personal information. Keep the password
secret and change it frequently.

e Enable access to the Web server only with the HTTPS protocol.
¢ Do not extend the default minimum privileges of the Web server "Everybody" user.

e Perform error-checking and range-checking on your variables in your program logic
because Web page users can change PLC variables to invalid values.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 211

Programming concepts

7.6 Profection

Connection mechanisms

To access remote connection partners with PUT/GET instructions, the user must also have
permission.

By default, the "Permit access with PUT/GET communication" option is not enabled. In this
case, read and write access to CPU data is only possible for communication connections
that require configuration or programming both for the local CPU and for the communication
partner. Access through BSEND/BRCYV instructions is possible, for example.

Connections for which the local CPU is only a server (meaning that no
configuration/programming of the communication with the communication partner exists at
the local CPU), are therefore not possible during operation of the CPU, for example:

e PUT/GET, FETCH/WRITE or FTP access through communication modules
e PUT/GET access from other S7 CPUs
e HMI access through PUT/GET communication

If you want to allow access to CPU data from the client side, that is, you do not want to
restrict the communication services of the CPU, follow these steps:

1. Configure the protection access level to be any level other than "No access (complete
protection)".

2. Select the "Permit access with PUT/GET communication" check box.

Connection mechanisms
[&] Permmit sccess with PUTIGET communication from remote partner (FLC, HMWIL OFC,)

When you download this configuration to the CPU, the CPU permits PUT/GET
communication from remote partners

7.6.2 External load memory

You can also protect the external load memory (memory card) from copies. To prevent the
copying of internal load memory to external load memory follow these steps:

1. From the device configuration of the CPU in STEP 7, select "Protection" from the General
properties.

2. In the "External Load Memory" section, select "Disable copy from internal load memory to
external load memory".

See also the topic|Inserting a memory card in the CPU (Page 139) for a description of how
this property affects the insertion of a memory card into the CPU.

S7-1200 Programmable controller
212 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.6 Protection

7.6.3 Know-how protection

Know-how protection allows you to prevent one or more code blocks (OB, FB, FC, or DB) in
your program from unauthorized access. You create a password to limit access to the code
block. The password-protection prevents unauthorized reading or modification of the code
block. Without the password, you can read only the following information about the code
block:

® Bilock title, block comment, and block properties
® Transfer parameters (IN, OUT, IN_OUT, Return)
e Call structure of the program

® Global tags in the cross references (without information on the point of use), but local
tags are hidden

When you configure a block for "know-how" protection, the code within the block cannot be
accessed except after entering the password.

Use the "Properties" task card of the code block to configure the know-how protection for
that block. After opening the code block, select "Protection” from Properties.

General |
General
Protection
Infarrmation
Time stamps Know-how protection
Compilation
The black 13 not protected

Artributes Eratection

Copy protection

1]

Mo binding

1. In the Properties for the code block, click il LIl
the "Protection" button to display the
"Know-how protection" dialog. :

2. Click the "Define" button to enter the [
password.]

Oefine.

After entering and confirming the password, GETTREETL
click "OK".

Entar protechion password

Hew

Confirm: ||

- -
Ok Canecel

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 213

Programming concepts

7.6 Profection

7.6.4

214

Copy protection

An additional security feature allows you to bind program blocks for use with a specific
memory card or CPU. This feature is especially useful for protecting your intellectual
property. When you bind a program block to a specific device, you restrict the program or
code block for use only with a specific memory card or CPU. This feature allows you to
distribute a program or code block electronically (such as over the Internet or through email)
or by sending a memory card. Copy protection is available for OBs (Page 188), FBs
(Page|190), and FCs|(Page|190). The S7-1200 CPU supports three types of block
protection:

® Binding to the serial number of a CPU
® Binding to the serial number of a memory card
® Dynamic binding with mandatory password

Use the "Properties"” task card of the code block to bind the block to a specific CPU or
memory card.

1. After opening the code block, select "Protection”.

[]

General |
Protection

Infarrmation

Time stamps

Know-how protection
Compilation

Amnibutes

The black 13 not protected

Frotection

Copy protection

1]

Mo binding

2. From the drop-down list under "Copy protection" task, select the type of copy protection

that you want to use.
Know-how protection

The block s not protected.
['Pr'nte_cﬁ'ah
Copy protection
Bind to senisl number of the memary card -
(&) Serial number is inserted when downloading to & device ora memary card.
| The password for copy protection has not been defined.

Define password
() Emtersenal number:

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.6 Protection

3. For binding to the serial number of a CPU or memory card, select either to insert the
serial number when downloading, or enter the serial number for the memory card or
CPU.

Note

The serial number is case-sensitive.

For dynamic binding with mandatory password, define the password that you must use to
download or copy the block.

When you subsequently download|(Page|216) a block with dynamic binding, you must
enter the password to be able to download the block. Note that the copy protection
password and the|know-how protection (Page|213) password are two separate
passwords.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 215

Programming concepts
7.7 Downloading the elements of your program

7.7 Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU.
When you download a project, the CPU stores the user program (OBs, FCs, FBs and DBs)
in internal load memory or if a SIMATIC memory card is present in external load memory
(the card).

Exiended dewmioad bs device
Conligrund aconii rodes of L1

Device Bt et T Adkinnda
TR CTNECOT0.. SO PEE TR0

PGP rnedace lor ol B D<o ELBEI00UIR TR

You can download your project from the programming device to your CPU from any of the
following locations:

® Project tree: Right-click the program element, and then click the context-sensitive
"Download" selection.

® Online menu: Click the "Download to device" selection.
® Toolbar: Click the "Download to device" icon.
e Device configuration: Right-click the CPU and select the elements to download.

Note that if you have applied dynamic binding with mandatory password (Page 214) to any
of the program blocks, you must enter the password for the protected blocks in order to
download them. If you have configured this type of copy protection for multiple blocks, you
must enter the password for each of the protected blocks in order to download them.

Note

Downloading a program does not clear or make any changes to existing values in retentive
memory. If you want to clear retentive memory before a download, then reset your CPU to
factory settings prior to downloading the program.

You can also|download a panel project for the Basic HMI panels|(Page 32) from the
TIA Portal to a memory card in the S7-1200 CPU.

S7-1200 Programmable controller
216 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.7 Downloading the elements of your program

Downloading when the configured CPU is different from the connected CPU

STEP 7 and the S7-1200 permit a download if the connected CPU has the capacity to store
a download from the configured CPU, based on the memory requirements of the project and
the compatibility of the 1/0. You can download the configuration and program from a CPU to
a larger CPU, for example, from a CPU 1211C DC/DC/DC to a CPU 1215C DC/DC/DC
because the I/O is compatible and the memory is sufficient. In this case, the download
operation displays a warning, "Differences between configured and target modules (online)"
along with the article numbers and firmware versions in the "Load preview" dialog. You must
choose either "No action" if you do not want the download to proceed or "Accept all" if you
do want the download to proceed:

Smus (o Tepem Wesipgpe Ao
v nCa Lasding mil not be perkrmad becains precerdsons am notmas

* Offerentmedulen Drferancas berwwan configured s rd cergetmed uen (eniine} M wetian

Dindive priche numben fonkne | GEST 2151 AGLGEN won (el m:u-?
BEST EH1-1AE0HINED Lz]

B
]
]
[-] ¥ Device conlpuna.. Delere pnd replace fpsere dam in sarper Download o desice
@ ot Cumniaed samwanes n desice
-]

T fbvarier Darntand alalame s and new Bpo e

Note

When you go online (Page|1313) after downloading the configured CPU to a different
connected CPU, you see the project for the configured CPU with online status indicators in
the project tree. In the online and diagnostics view, however, you see the actual connected
CPU module type.

Devices
: || = Online access
== General
w Diagnaostics
» [Local modules ~ Module
Iv'_-. PLC_4 [CPU 1211C DODODC] I = - .
Y D=vice configuratian A | U 1215C DODCDC
¥ Online & disgnastics Cicle time BEST 215-1AGL0-0XED
N]
v g Frogram blocks [o 4 n
b FROFINET interface [K1]
b L Technology objects .
b Functions V420

F g Externsl source files 1

+ [g PLC togs @ TA F V140
v g FLC data ypes

¥ g5l Warch and force tables o
¥ i Online backups

v [Taces

b [Device prowy data

1

Figure 7-1 Online view when configured CPU is different from connected CPU

You can, of course, change your device|(Page 170) in the device configuration so that the
configured CPU is the same module type as the connected CPU. The "Change device"
dialog provides complete compatibility details when you try to change a device.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 217

Programming concepts
7.7 Downloading the elements of your program

STEP 7 and the S7-1200 prohibit a download if the connected CPU does not have the
capacity to store a download from the configured CPU; for example, you cannot download
the hardware configuration and program for the following cases:

e CPU 1215C DC/DC/DC to a CPU 1212C DC/DC/DC due to insufficient work memory
e CPU 1211C DC/DC/Relay to a CPU 1211C DC/DC/DC due to /O differences

e CPU 1217C DC/DC/DC to any CPU 1211C, CPU 1212C, CPU 1214C, or CPU 1215C
due to the 1.5V DC outputs in the CPU 1217C.

e CPU 1214C V4.2 to CPU 1214C V4.0, due to firmware version incompatibility

The "Load preview" dialog displays an error in such cases:

Hamnge Acsion
M3 Landing wl noe be perdmied becs s precand Bons s1e rarmes

Recovering from a failed download

If the download fails, the Info tab of the Inspector Window displays the reason. The
diagnostic buffer also provides information. After a failed download, follow these steps to be
able to download successfully:

1. Correct the problem as described in the error message.
2. Reattempt the download.

In rare cases, the download succeeds but a subsequent power cycle of the CPU fails. In this
case you may see an error in the diagnostic buffer such as:

® 16# 02:4175 -- CPU error: Memory card evaluation error: Unknown or incompatible
version of CPU configuration description current card type: No memory card Function
finished/aborted, new startup inhibit set: ..- Memory card missing, wrong type, wrong
content or protected

If this occurs and additional attempts to download fail, you must clear the internal load
memory or external load memory:

1. If using internal load memory, reset the CPU to factory settings.

2. If using a SIMATIC memory card, remove it and delete the contents of the memory card
(Page 145) before reinserting.

3. Download the hardware configuration and software.

S7-1200 Programmable controller
218 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.8 Synchronizing the online CPU and offline project

See also
Synchronizing the online CPU and offline project/(Page|219)

7.8 Synchronizing the online CPU and offline project

When you download project blocks to the CPU, the CPU can detect whether blocks or tags
have changed in the online CPU since the last download. In such cases, the CPU offers you
the choice to synchronize the changes. This means that you can upload the online CPU
changes to the project before downloading the project to the CPU. Changes in the online
CPU can be due to a variety of factors:

e Changes to the start values of data block tags during runtime, for example by the
WRIT_DBL instruction|(Page 538) or by loading a recipe

e A download from a "secondary" project (a project other than the one that originated the
last download) where one or more of the following conditions exist:

— The online CPU includes program blocks that do not exist in the project.
— Data block tags or block attributes differ between the offline project and online CPU.

— PLC tags exist in the online CPU that do not exist in the offline project.

Note

If you edit blocks or tags in the project that you used for the last download, you do not have
to make any choices about synchronization. STEP 7 and the CPU detect that the offline
project changes are newer than the online CPU and proceeds with a normal download
operation.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 219

Programming concepts

7.8 Synchronizing the online CPU and offline project

Synchronization choices

When you download a project to the CPU, you see the synchronization dialog if STEP 7
detects that data blocks or tags in the online CPU are newer than the project values. For
example, if the STEP 7 program has executed WRIT_DBL and changed a start value for a
tag in Data_block_1, STEP 7 displays the following synchronization dialog when you initiate
a download:

Software 1ynr|i'r'n'nlr:.t1hn Before load] rig to a device

9 “The online program conltains changes you may first nead 1o load in your project befors you parform “Download 1o device™.
Software synchrenization Status - Action
& - orc
[* ‘Program blacks'
Q Data_block_1 [DB1] [B Upload and aversrite in the project
4 1 »
 Ofinelanline COMmparsan - [Synchronize ' Continue witheut synchronization] Cancel

This dialog lists the program blocks where differences exist. From this dialog, you have the
following choices:

® Online/offline comparison: If you click this button, STEP 7 displays the program blocks,
system blocks, technology objects, PLC tags, and PLC data types for the project as
compared to the online CPU |(Page 1323). For each object, you can click to see a
detailed analysis of the differences including time stamps. You can use this information to
decide what to do about the differences between the online CPU and the project.

® Synchronize: If you click this button, STEP 7 uploads the data blocks, tags, and other
objects from the online CPU to the project. You can then continue with the program
download, unless program execution has again caused the project to be out of sync with
the CPU.

® Continue without synchronization: If you click this button, STEP 7 downloads the project
to the CPU.

® Cancel: If you click this button, you cancel the download operation.

S7-1200 Programmable controller
220 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.9 Uploading from the online CPU

7.9 Uploading from the online CPU

You can also copy the program blocks from an online CPU or a memory card attached to
your programming device.

Prepare the offline project for the copied program blocks: ~ 5 suwject

1. Add a CPU device that matches the online CPU. g[“'t, -
2. Expand the CPU node once so that the "Program g PLC1 [CPU1202C DODTDC]

I bewvice configuration
W Cnhine & diagnostics

blocks" folder is visible.

» ¢ Program blacks
ﬁ' sdd new blocl
& Main [0B1]

To upload the program blocks from the online CPU to the ' & ¢ onjine
offline project, follow these steps:

1. Click the "Program blocks" folder in the offline project. it

2. Click the "Go online" button.

3. Click the "Upload" button.

4. Confirm your decision from the Upload dialog

(Page 1313).
When the upload is complete, STEP 7 displays all of the AP c_1 [cPU 1272€ DODaE])
uploaded program blocks in the project. 5:f'*i"-"-'1"""'."“"'"
% Online & diagnostics
- ':.F'l-:-gfnm r-I-:--:JI 5
I 2dd new block
2 Maim [OB1]
3 Block_1 [FC1)
7.91 Comparing the online CPU to the offline CPU

You can use the"Compare" editor|(Page 1323) in STEP 7 to find differences between the
online and offline projects. You might find this useful prior to uploading from the CPU.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 221

Programming concepts
7.10 Debugging and testing the program

7.10 Debugging and testing the program

7.101 Monitor and modify data in the CPU

As shown in the following table, you can monitor and modify values in the online CPU.

Table 7- 5 Monitoring and modifying data with STEP 7

Editor Monitor Modify Force
Watch table Yes Yes No
Force table Yes No Yes
Program editor Yes Yes No
Tag table Yes No No
DB editor Yes No No

Monitoring with a

T
watch table
Bl 72A3F FREBS

Hams Address Display formiat hlanitor valus o dify value i

"on® 0.0 Baol [FALSE

off %101 Baol [E] FALSE

“Fun® %000 Baal [E FALSE

. Monitoring with the LAD editor
n af Fun
e 4 bemmd
I

Run” E
: !.-.._a

Refer to the "Online and diagnostics" chapter for more information about monitoring and
modifying data in the CPU |(Page|1325).

S7-1200 Programmable controller
222 System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts

7.10 Debugging and testing the program

7.10.2 Watch tables and force tables

You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project
to support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.

With a watch table, you can monitor and interact with the CPU as it executes the user
program. You can display or change values not only for the tags of the code blocks and data
blocks, but also for the memory areas of the CPU, including the inputs and outputs (I and Q),
peripheral inputs (I:P), bit memory (M), and data blocks (DB).

With the watch table, you can enable the physical outputs (Q:P) of a CPU in STOP mode.
For example, you can assign specific values to the outputs when testing the wiring for the
CPU.

STEP 7 also provides a force table for "forcing" a tag to a specific value. For more
information about forcing, see the section on forcing values in the CPU|(Page|1333) in the
"Online and Diagnostics" chapter.

Note
The force values are stored in the CPU and not in the watch table.

You cannot force an input (or "I" address). However, you can force a peripheral input. To
force a peripheral input, append a ":P" to the address (for example: "On:P").

STEP 7 also provides the capability of tracing and recording program variables based on
trigger conditions (Page|1347).

7.10.3 Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is
used throughout the complete project, such as the user program, the CPU and any HMI
devices. The "Cross-reference" tab displays the instances where a selected object is being
used and the other objects using it. The Inspector window also includes blocks which are
only available online in the cross-references. To display the cross-references, select the
"Show cross-references" command. (In the Project view, find the cross references in the
"Tools" menu.)

Note

You do not have to close the editor to see the cross-reference information.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 223

Programming concepts

7.10 Debugging and testing the program

224

You can sort the entries in the cross-reference. The cross-reference list provides an
overview of the use of memory addresses and tags within the user program.

® When creating and changing a program, you retain an overview of the operands, tags
and block calls you have used.

® From the cross-references, you can jump directly to the point of use of operands and

tags.

e During a program test or when troubleshooting, you are notified about which memory
location is being processed by which command in which block, which tag is being used in
which screen, and which block is called by which other block.

Table 7- 6 Elements of the cross reference
Column Description
Object Name of the object that uses the lower-level objects or that is being used by the
lower-level objects
Number Number of uses
Point of use Each location of use, for example, network
Property Special properties of referenced objects, for example, the tag names in multi-
instance declarations
as Shows additional information about the object, such as whether an instance DB is
used as template or as a multiple instance
Access Type of access, whether access to the operand is read access (R) and/or write
access (W)
Address Address of the operand
Type Information on the type and language used to create the object
Path Path of object in project tree

Depending on the installed products, the cross-reference table displays additional or different

columns.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Programming concepts
7.10 Debugging and testing the program

7104 Call structure to examine the calling hierarchy

The call structure describes the call hierarchy of the block within your user program. It
provides an overview of the blocks used, calls to other blocks, the relationships between
blocks, the data requirements for each block, and the status of the blocks. You can open the
program editor and edit blocks from the call structure.

Displaying the call structure provides you with a list of the blocks used in the user program.
STEP 7 highlights the first level of the call structure and displays any blocks that are not
called by any other block in the program. The first level of the call structure displays the OBs
and any FCs, FBs, and DBs that are not called by an OB. If a code block calls another block,
the called block is shown as an indentation under the calling block. The call structure only
displays those blocks that are called by a code block.

You can selectively display only the blocks causing conflicts within the call structure. The
following conditions cause conflicts:

® Blocks that execute any calls with older or newer code time stamps
® Blocks that call a block with modified interface

® Blocks that use a tag with modified address and/or data type

® Blocks that are called neither directly nor indirectly by an OB

® Blocks that call a non-existent or missing block

You can group several block calls and data blocks as a group. You use a drop-down list to
see the links to the various call locations.

You can also perform a consistency check to show time stamp conflicts. Changing the time
stamp of a block during or after the program is generated can lead to time stamp conflicts,
which in turn cause inconsistencies among the blocks that are calling and being called.

® Most time stamp and interface conflicts can be corrected by recompiling the code blocks.

e [f compilation fails to clear up inconsistencies, use the link in the "Details" column to go to
the source of the problem in the program editor. You can then manually eliminate any
inconsistencies.

® Any blocks marked in red must be recompiled.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 225

Programming concepts

7.10 Debugging and testing the program

S7-1200 Programmable controller
226 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.1 Bit logic operations

8.1.1 Bit logic instructions

LAD and FBD are very effective for handling Boolean logic. While SCL is especially effective
for complex mathematical computation and for project control structures, you can use SCL
for Boolean logic.

LAD contacts

Table 8- 1 Normally open and normally closed contacts

LAD SCL Description
"I IF in THEN Normally open and normally closed contacts: You can connect contacts
- — Statement; to other contacts and create your own combination logic. If the input bit
ELSE you specify uses memory identifier | (input) or Q (output), then the bit
Statement; value is read from the process-image register. The physical contact sig-
END IF: nals in your control process are wired to | terminals on the PLC. The CPU
.. IF NOT (in) THEN scans the wired !nput signals ar_xd cont_lnuously_updates the correspond-
—— Statement ; ing state values in the process-image input register.
ELSE You can perform an immediate read of a physical input using ":P" follow-
Statement : ing the | offset (example: "%I3.4:P"). For an immediate read, the bit data
END IF; values are read directly from the physical input instead of the process

image. An immediate read does not update the process image.

Table 8- 2 Data types for the parameters

Parameter Data type Description
IN Bool Assigned bit

The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.

The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.
® Contacts connected in series create AND logic networks.

® Contacts connected in parallel create OR logic networks.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 227

Basic instructions

8.1 Bit logic operations

FBD AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and
EXCLUSIVE OR (x) box networks where you can specify bit values for the box inputs and
outputs. You may also connect to other logic boxes and create your own logic combinations.
After the box is placed in your network, you can drag the "Insert input" tool from the
"Favorites" toolbar or instruction tree and then drop it onto the input side of the box to add
more inputs. You can also right-click on the box input connector and select "Insert input".

Box inputs and outputs can be connected to another logic box, or you can enter a bit
address or bit symbol name for an unconnected input. When the box instruction is executed,
the current input states are applied to the binary box logic and, if true, the box output will be

true.

Table 8-3 AND, OR, and XOR boxes
FBD SCL! Description
o out := inl AND All inputs of an AND box must be TRUE for the output to be

T el in2; TRUE.

T2 — s —

- out := inl OR in2; | Any input of an OR box must be TRUE for the output to be

1 el TRUE.

12" — —

- out := inl XOR An odd number of the inputs of an XOR box must be TRUE for

T el in2; the output to be TRUE.

T2 — s —

1 For SCL: You must assign the result of the operation to a variable to be used for another statement.

Table 8- 4 Data types for the parameters
Parameter Data type Description
IN1, IN2 Bool Input bit
S7-1200 Programmable controller
228 System Manual, V4.2, 09/2016, A5E02486680-AK

Basic instructions

NOT logic inverter

Table 8- 5

Invert RLO (Result of Logic Operation)

8.1 Bit logic operations

LAD FBD

SCL

Description

"1 —e

2" — sk

— NOT p— B

NOT

"IN —

IR ol

For FBD programming, you can drag the "Invert RLO" tool
from the "Favorites" toolbar or instruction tree and then drop
it on an input or output to create a logic inverter on that box
connector.

The LAD NOT contact inverts the logical state of power flow
input.

If there is no power flow into the NOT contact, then there
is power flow out.

If there is power flow into the NOT contact, then there is
no power flow out.

Output coil and assignment box

The coil output instruction writes a value for an output bit. If the output bit you specify uses
memory identifier Q, then the CPU turns the output bit in the process-image register on or
off, setting the specified bit equal to power flow status. The output signals for your control
actuators are wired to the Q terminals of the CPU. In RUN mode, the CPU system
continuously scans your input signals, processes the input states according to your program
logic, and then reacts by setting new output state values in the process-image output
register. The CPU system transfers the new output state reaction that is stored in the
process-image register, to the wired output terminals.

Table 8-6 Assignment and negate assignment
LAD FBD SCL Description
"ouT” “ouT out := <Boolean In FBD programming, LAD coils are transformed into
—{ — z expression>; assignment (= and /=) boxes where you specify a bit ad-
- - dress for the box output. Box inputs and outputs can be
connected to other box logic or you can enter a bit ad-
"ouT Ut out := NOT <Boole- |dress.
——/— iz an expression>; You can specify an immediate write of a physical output
- - using ":P" following the Q offset (example: "%Q3.4:P").
For an immediate write, the bit data values are written to
the process image output and directly to physical output.
"ouT
— o—

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

229

Basic instructions
8.1 Bit logic operations

Table 8-7 Data types for the parameters

Parameter Data type Description
ouT Bool Assigned bit

e |[f there is power flow through an output coil or an FBD "=" box is enabled, then the output
bit is set to 1.

® |[f there is no power flow through an output coil or an FBD "=" assignment box is not
enabled, then the output bit is set to 0.

e |f there is power flow through an inverted output coil or an FBD "/=" box is enabled, then
the output bit is set to 0.

e |f there is no power flow through an inverted output coil or an FBD "/=" box is not enabled,
then the output bit is set to 1.

8.1.2 Set and reset instructions

Set and Reset 1 bit

Table 8- 8 S and R instructions

LAD FBD SCL Description
"uT" "guT" Not available Set output:
o When S (Set) is activated, then the data value at the OUT
—{S)— "IN"—I - address is set to 1. When S is not activated, OUT is not
changed.
"OuT" ouT" Not available Reset output:
2 When R (Reset) is activated, then the data value at the OUT
—R}— 'IN"—‘ — address is set to 0. When R is not activated, OUT is not
changed.

1 For LAD and FBD: These instructions can be placed anywhere in the network.

2 For SCL: You must write code to replicate this function within your application.

Table 8- 9 Data types for the parameters

Parameter Data type Description
IN (or connect to contact/gate logic) Bool Bit tag of location to be monitored
ouT Bool Bit tag of location to be set or reset

S7-1200 Programmable controller
230 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.1 Bit logic operations

Set and Reset Bit Field

Table 8- 10 SET_BF and RESET_BF instructions

LAD? FBD SCL Description
"OUT" "quT" Not available Set bit field:
TEETBE When SET_BF is activated, a data value of 1 is assigned to "n"
—{SET_BFH —EN bits starting at address tag OUT. When SET_BF is not activat-
"t M ed, OUT is not changed.
"OuUT" Ut Not available Reset bit field:
"RESET BF | RESET_BF writes a data value of 0 to "n" bits starting at ad-
—{ RESET_BF) —EN dress tag OUT. When RESET_BF is not activated, OUT is not
"n" N changed.

1 For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

Table 8- 11 Data types for the parameters

Parameter Data type Description

ouT Bool Starting element of a bit field to be set or reset (Example:
#MyArray[3])

n Constant (UInt) Number of bits to write

Set-dominant and Reset-dominant flip-flops

Table 8- 12 RS and SR instructions

LAD / FBD SCL Description
"HOUT Not available Reset/set flip-flop:
RS RS is a set dominant latch where the set dominates. If the set (S1) and reset (R)
—R O signals are both true, the value at address INOUT will be 1.
=51
"L OUT Not available Set/reset flip-flop:
Eh SR is a reset dominant latch where the reset dominates. If the set (S) and reset
-5 Q- (R1) signals are both true, the value at address INOUT will be 0.
=R

' For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 231

Basic instructions

8.1 Bit logic operations

Table 8- 13 Data types for the parameters

Parameter Data type Description

S, S1 Bool Set input; 1 indicates dominance
R, R1 Bool Reset input; 1 indicates dominance
INOUT Bool Assigned bit tag "INOUT"

Q Bool Follows state of "INOUT" bit

The "INOUT" tag assigns the bit address that is set or reset. The optional output Q follows
the signal state of the "INOUT" address.

Instruction S1 R "INOUT" bit
RS 0 0 Previous state
0 1 0
1 0o 1
1 1 1
S R1
SR 0 0 Previous state
0 1 0
1 0o 1
1 1 0

S7-1200 Programmable controller
232 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.1.3

Table 8- 14

8.1 Bit logic operations

Positive and negative edge instructions

Positive and negative transition detection

LAD

FBD

SCL

Description

“lN“

—i P
"M_BIT"

py

P

"M_BIT"

Not available

Scan operand for positive signal edge.

LAD: The state of this contact is TRUE when a positive transition (OFF-
to-ON) is detected on the assigned "IN" bit. The contact logic state is
then combined with the power flow in state to set the power flow out
state. The P contact can be located anywhere in the network except the
end of a branch.

FBD: The output logic state is TRUE when a positive transition (OFF-
to-ON) is detected on the assigned input bit. The P box can only be
located at the beginning of a branch.

”lN“

—Np-
"M_BIT"

e

"M_BIT"

Not available

Scan operand for negative signal edge.

LAD: The state of this contact is TRUE when a negative transition (ON-
to-OFF) is detected on the assigned input bit. The contact logic state is
then combined with the power flow in state to set the power flow out
state. The N contact can be located anywhere in the network except
the end of a branch.

FBD: The output logic state is TRUE when a negative transition (ON-to-
OFF) is detected on the assigned input bit. The N box can only be
located at the beginning of a branch.

"OuT"

—(P)
"M_BIT"

"quT"

P:

"M_BIT"

Not available

Set operand on positve signal edge.

LAD: The assigned bit "OUT" is TRUE when a positive transition (OFF-
to-ON) is detected on the power flow entering the coil. The power flow
in state always passes through the coil as the power flow out state. The
P coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a positive transition (OFF-
to-ON) is detected on the logic state at the box input connection or on
the input bit assignment if the box is located at the start of a branch.
The input logic state always passes through the box as the output logic
state. The P= box can be located anywhere in the branch.

"quT"

— (N —
"M_BIT

”I:ILIT“

"M_BIT"

Not available 1

Set operand on negative signal edge.

LAD: The assigned bit "OUT" is TRUE when a negative transition (ON-
to-OFF) is detected on the power flow entering the coil. The power flow
in state always passes through the coil as the power flow out state. The
N coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a negative transition (ON-
to-OFF) is detected on the logic state at the box input connection or on
the input bit assignment if the box is located at the start of a branch.
The input logic state always passes through the box as the output logic
state. The N= box can be located anywhere in the branch.

T For SCL: You must write code to replicate this function within your application.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

233

Basic instructions

8.1 Bit logic operations

Table 8- 15 P_TRIG and N_TRIG

LAD / FBD SCL Description
B TRIE Not available * Scan RLO (result of logic operation) for positve signal edge.
_ ELK_ 0— The Q output power flow or logic state is TRUE when a positive transi-
- - tion (OFF-to-ON) is detected on the CLK input state (FBD) or CLK pow-
M_EBIT er flow in (LAD).
In LAD, the P_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the P_TRIG instruction can be located any-
where except the end of a branch.
o TEE Not available * Scan RLO for negative signal edge.
_ ELK_ oL The Q output power flow or logic state is TRUE when a negative transi-
o BT tion (ON-to-OFF) is detected on the CLK input state (FBD) or CLK pow-

er flow in (LAD).

In LAD, the N_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the N_TRIG instruction can be located any-
where except the end of a branch.

1 For SCL: You must write code to replicate this function within your application.

Table 8- 16 R_TRIG and F_TRIG instructions

LAD / FBD SCL

Description

"R_TRIG_DB" (
CLK:=_in_,
Q=> bool out);

"F_TRIG_DE"
F_TRIG

EN ENG —

CLE Qp—

Set tag on positive signal edge.

The assigned instance DB is used to store the previous state of the CLK
input. The Q output power flow or logic state is TRUE when a positive
transition (OFF-to-ON) is detected on the CLK input state (FBD) or CLK
power flow in (LAD).

In LAD, the R_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the R_TRIG instruction can be located any-
where except the end of a branch.

"F_TRIG DB" (
CLK:=_in ,
Q=> bool out);

"F_TRIG_DE_1"
F_TRIG

EHl ENG —

Lk Q-

Set tag on negative signal edge.

The assigned instance DB is used to store the previous state of the CLK
input. The Q output power flow or logic state is TRUE when a negative
transition (ON-to-OFF) is detected on the CLK input state (FBD) or CLK
power flow in (LAD).

In LAD, the F_TRIG instruction cannot be located at the beginning or
end of a network. In FBD, the F_TRIG instruction can be located any-
where except the end of a branch.

234

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.1 Bit logic operations

For R_TRIG and F_TRIG, when you insert the instruction in the program, the "Call options"
dialog opens automatically. In this dialog you can assign

whether the edge memory bit is stored in its own data block (single instance) or as a local
tag (multiple instance) in the

block interface. If you create a separate data block, you will find it in the project tree in the
"Program resources" folder

under "Program blocks > System blocks".

Table 8- 17 Data types for the parameters (P and N contacts/coils, P=, N=, P_TRIG and N_TRIG)
Parameter Data type Description
M_BIT Bool Memory bit in which the previous state of the input is saved
IN Bool Input bit whose transition edge is detected
ouT Bool Output bit which indicates a transition edge was detected
CLK Bool Power flow or input bit whose transition edge is detected
Q Bool Output which indicates an edge was detected

All edge instructions use a memory bit (M_BIT: P/N contacts/coils, P_TRIG/N_TRIG) or
(instance DB bit: R_TRIG, F_TRIG) to store the previous state of the monitored input signal.
An edge is detected by comparing the state of the input with the previous state. If the states
indicate a change of the input in the direction of interest, then an edge is reported by writing
the output TRUE. Otherwise, the output is written to FALSE.

Note

Edge instructions evaluate the input and memory-bit values each time they are executed,
including the first execution. You must account for the initial states of the input and memory
bit in your program design either to allow or to avoid edge detection on the first scan.

Because the memory bit must be maintained from one execution to the next, you should use
a unique bit for each edge instruction, and you should not use this bit any other place in your
program. You should also avoid temporary memory and memory that can be affected by
other system functions, such as an I/O update. Use only M, global DB, or Static memory (in
an instance DB) for M_BIT memory assignments.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 235

Basic instructions

8.2 Timer operations

8.2 Timer operations

You use the timer instructions to create programmed time delays. The number of timers that
you can use in your user program is limited only by the amount of memory in the CPU. Each
timer uses a 16 byte IEC_Timer data type DB structure to store timer data that is specified at
the top of the box or coil instruction. STEP 7 automatically creates the DB when you insert
the instruction.

Table 8- 18 Timer instructions

LAD / FBD boxes LAD coils SCL Description
EC_Timer 0 0B "IEC_Timer_O0_DB".TP(The TP timer generates a pulse with a preset
R —{TF }— IN:= bool_in_, width time.
Time “PRESET_Tag" PT:= time_in_,
— N 0= Q=> bool_out_,
il cl ET=> time out);
IEC_Timer_1 TOM_OE "IEC_Timer_ 0_DB".TON (The TON timer sets output Q to ON after a preset
BT —{TON }— IN:= bool in_, time delay.
Time "PRESET_Tag" PT:= time in_,
=N Q= Q=> bool_out_,
il Er ET=> time out);
IEC Timer 2 TOF DE "IEC_Timer_O0_DB".TOF (The TOF timer resets output Q to OFF after a
e —{ TOF }— IN:= bool_in_, preset time delay.
Time "FRESET Tag” PT:= time_in_,
IR 0- Q=> bool _out_,
il i ET=> time out);
IEC_Timer_3 TOMR_DB "IEC_Timer_ O_DB".TONR (|The TONR timer sets output Q to ON after a pre-
Eena —{ TONR }— IN:= bool in , set time delay. Elapsed time is accumulated over
Time “PRESET_Tag" R:= bool in , multiple timing periods until the R input is used to
I 0= PT ;; tim; i; , reset the elapsed time.
B Q=> bool out_,
i ET=>_ time_out);
FBD only: TOM OB PRESET_TIMER (The PT (Preset timer) coil loads a new PRESET
{p'F:' PT:= time_in_, time value in the specified IEC_Timer.
| il "FRESET Tag"
oT | TIMER:=_ iec_timer_in);
FBD only: TOM DB RESET_TIMER (The RT (Reset timer) coil resets the specified
—~ RT_:,_ _iec_timer_in); IEC_Timer.

RT

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL examples, "IEC_Timer_0_DB" is the name of the instance DB.

236

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.2 Timer operations

Table 8- 19 Data types for the parameters

Parameter Data type Description

Box: IN Bool TP, TON, and TONR:

Coil: Power flow Box: 0=Disable timer, 1=Enable timer
Coil: No power flow=Disable timer, Power flow=Enable timer
TOF:

Box: 0=Enable timer, 1=Disable timer
Coil: No power flow=Enable timer, Power flow=Disable timer

R Bool TONR box only:
0=No reset
1= Reset elapsed time and Q bit to 0
Box: PT Time Timer box or coil: Preset time input
Coil: "PRESET_Tag"
Box: Q Bool Timer box: Q box output or Q bit in the timer DB data
Coil: DBdata.Q Timer coil: you can only address the Q bit in the timer DB data
Box: ET Time Timer box: ET (elapsed time) box output or ET time value in the timer DB
Coil: DBdata.ET data

Timer coil: you can only address the ET time value in the timer DB data.

Table 8- 20 Effect of value changes in the PT and IN parameters

Timer Changes in the PT and IN box parameters and the corresponding coil parameters

P e Changing PT has no effect while the timer runs.

e Changing IN has no effect while the timer runs.

TON e Changing PT has no effect while the timer runs.
e Changing IN to FALSE, while the timer runs, resets and stops the timer.

TOF e Changing PT has no effect while the timer runs.
e Changing IN to TRUE, while the timer runs, resets and stops the timer.

TONR e Changing PT has no effect while the timer runs, but has an effect when the timer resumes.

e Changing IN to FALSE, while the timer runs, stops the timer but does not reset the timer. Changing
IN back to TRUE will cause the timer to start timing from the accumulated time value.

PT (preset time) and ET (elapsed time) values are stored in the specified IEC_TIMER DB
data as signed double integers that represent milliseconds of time. TIME data uses the T#
identifier and can be entered as a simple time unit (T#200ms or 200) and as compound time
units like T#2s_200ms.

Table 8- 21 Size and range of the TIME data type

Data type Size Valid number ranges’
TIME 32 bits, stored T#-24d_20h_31m_23s_648ms to T#24d_20h_31m_23s_647ms
as Dint data Stored as -2,147,483,648 ms to +2,147,483,647 ms

1 The negative range of the TIME data type shown above cannot be used with the timer instructions. Negative PT (preset
time) values are set to zero when the timer instruction is executed. ET (elapsed time) is always a positive value.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 237

Basic instructions

8.2 Timer operations

Timer coil example

The -(TP)-, -(TON)-, -(TOF)-, and -(TONR)- timer coils must be the last instruction in a LAD
network. As shown in the timer example, a contact instruction in a subsequent network
evaluates the Q bit in a timer coil's IEC_Timer DB data. Likewise, you must address the
ELAPSED element in the IEC_timer DB data if you want to use the elapsed time value in
your program.

"Tag_Input" Timer

| { | {TP —

| "DE1".MyIEC_

"Tag_Time"

The pulse timer is started on a 0 to 1 transition of the Tag_Input bit value. The timer runs for
the time specified by Tag_Time time value.

"OB1".MylEC_
Timer.0) "Tag_Output”
Il [3
11 L

As long as the timer runs, the state of DB1.MylEC_Timer.Q=1 and the Tag_Output value=1.
When the Tag_Time value has elapsed, then DB1.MylEC_Timer.Q=0 and the Tag_Output
value=0.

Reset timer -(RT)- and Preset timer -(PT)- coils

These caoil instructions can be used with box or coil timers and can be placed in a mid-line
position. The coil output power flow status is always the same as the coil input status. When
the -(RT)- coil is activated, the ELAPSED time element of the specified IEC_Timer DB data
is reset to 0. When the -(PT)- coil is activated, the PRESET time element of the specified
IEC_Timer DB data is loaded with the assigned time-duration value..

Note

When you place timer instructions in an FB, you can select the "Multi-instance data block"
option. The timer structure names can be different with separate data structures, but the
timer data is contained in a single data block and does not require a separate data block for
each timer. This reduces the processing time and data storage necessary for handling the
timers. There is no interaction between the timer data structures in the shared multi-instance
DB.

S7-1200 Programmable controller
238 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.2 Timer operations

Operation of the timers

Table 8-22 Types of IEC timers

Timer Timing diagram
TP: Generate pulse IN
The TP timer generates a pulse with a preset width
time. | | | | || | |
ETA
PT_/
Q 4
PT [et | [pT |
TON: Generate ON-delay IN
The TON timer sets output Q to ON after a preset time
delay. | | | |
ET)
PTT
QY pPT PT

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 239

Basic instructions

8.2 Timer operations

Timer Timing diagram
TOF: Generate OFF-delay IN
The TOF timer resets output Q to OFF after a preset
time delay. I_I
ET
PTT
@ PT PT
|
| [

TONR: Time accumulator
The TONR timer sets output Q to ON after a preset time

A

delay. Elapsed time is accumulated over multiple timing | |
‘ ‘ ‘
/
A
A

periods until the R input is used to reset the elapsed
time. ET

/—/__PT—

Note

In the CPU, no dedicated resource is allocated to any specific timer instruction. Instead,
each timer utilizes its own timer structure in DB memory and a continuously-running internal
CPU timer to perform timing.

When a timer is started due to an edge change on the input of a TP, TON, TOF, or TONR
instruction, the value of the continuously-running internal CPU timer is copied into the
START member of the DB structure allocated for this timer instruction. This start value
remains unchanged while the timer continues to run, and is used later each time the timer is
updated. Each time the timer is started, a new start value is loaded into the timer structure
from the internal CPU timer.

When a timer is updated, the start value described above is subtracted from the current
value of the internal CPU timer to determine the elapsed time. The elapsed time is then
compared with the preset to determine the state of the timer Q bit. The ELAPSED and Q
members are then updated in the DB structure allocated for this timer. Note that the elapsed
time is clamped at the preset value (the timer does not continue to accumulate elapsed time
after the preset is reached).

S7-1200 Programmable controller
240 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.2 Timer operations

A timer update is performed when and only when:
® Atimer instruction (TP, TON, TOF, or TONR) is executed

o The "ELAPSED" member of the timer structure in DB is referenced directly by an
instruction

e The "Q" member of the timer structure in DB is referenced directly by an instruction

Timer programming

The following consequences of timer operation should be considered when planning and
creating your user program:

® You can have multiple updates of a timer in the same scan. The timer is updated each
time the timer instruction (TP, TON, TOF, TONR) is executed and each time the
ELAPSED or Q member of the timer structure is used as a parameter of another
executed instruction. This is an advantage if you want the latest time data (essentially an
immediate read of the timer). However, if you desire to have consistent values throughout
a program scan, then place your timer instruction prior to all other instructions that need
these values, and use tags from the Q and ET outputs of the timer instruction instead of
the ELAPSED and Q members of the timer DB structure.

® You can have scans during which no update of a timer occurs. It is possible to start your
timer in a function, and then cease to call that function again for one or more scans. If no
other instructions are executed which reference the ELAPSED or Q members of the timer
structure, then the timer will not be updated. A new update will not occur until either the
timer instruction is executed again or some other instruction is executed using ELAPSED
or Q from the timer structure as a parameter.

e Although not typical, you can assign the same DB timer structure to multiple timer
instructions. In general, to avoid unexpected interaction, you should only use one timer
instruction (TP, TON, TOF, TONR) per DB timer structure.

e Self-resetting timers are useful to trigger actions that need to occur periodically. Typically,
self-resetting timers are created by placing a normally-closed contact which references
the timer bit in front of the timer instruction. This timer network is typically located above
one or more dependent networks that use the timer bit to trigger actions. When the timer
expires (elapsed time reaches preset value), the timer bit is ON for one scan, allowing the
dependent network logic controlled by the timer bit to execute. Upon the next execution of
the timer network, the normally closed contact is OFF, thus resetting the timer and
clearing the timer bit. The next scan, the normally closed contact is ON, thus restarting
the timer. When creating self-resetting timers such as this, do not use the "Q" member of
the timer DB structure as the parameter for the normally-closed contact in front of the
timer instruction. Instead, use the tag connected to the "Q" output of the timer instruction
for this purpose. The reason to avoid accessing the Q member of the timer DB structure
is because this causes an update to the timer and if the timer is updated due to the
normally closed contact, then the contact will reset the timer instruction immediately. The
Q output of the timer instruction will not be ON for the one scan and the dependent
networks will not execute.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 241

Basic instructions

8.2 Timer operations

Time data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the timer data stored in the previous run mode session is lost, unless
the timer data structure is specified as retentive (TP, TON, TOF, and TONR timers).

When you accept the defaults in the call options dialog after you place a timer instruction in
the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your timer data retentive, you must either use a global DB or a Multi-
instance DB.

Assign a global DB to store timer data as retentive data

This option works regardless of where the timer is placed (OB, FC, or FB).
1. Create a global DB:

Double-click "Add new block" from the Project tree
Click the data block (DB) icon
For the Type, choose global DB

If you want to be able to select individual data elements in this DB as retentive, be
sure the DB type "Optimized" box is checked. The other DB type option "Standard -
compatible with S7-300/400" only allows setting all DB data elements retentive or
none retentive.

Click OK

2. Add timer structure(s) to the DB:

In the new global DB, add a new static tag using data type IEC_Timer.
In the "Retain" column, check the box so that this structure will be retentive.

Repeat this process to create structures for all the timers that you want to store in this
DB. You can either place each timer structure in a unique global DB, or you can place
multiple timer structures into the same global DB. You can also place other static tags
besides timers in this global DB. Placing multiple timer structures into the same global
DB allows you to reduce your overall number of blocks.

Rename the timer structures if desired.

3. Open the program block for editing where you want to place a retentive timer (OB, FC, or
FB).

4. Place the timer instruction at the desired location.

5. When the call options dialog appears, click the cancel button.

6. On the top of the new timer instruction, type the name (do not use the helper to browse)
of the global DB and timer structure that you created above (example:
"Data_block_3.Static_1").

242

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.2 Timer operations

Assign a multi-instance DB to store timer data as retentive data

This option only works if you place the timer in an FB.

This option depends upon whether the FB properties specify "Optimized block access"
(allows symbolic access only). To verify how the access attribute is configured for an existing
FB, right-click on the FB in the Project tree, choose properties, and then choose Attributes.

If the FB specifies "Optimized block access" (allows symbolic access only):

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the timer if desired.

Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure
appears in the FB Interface under Static.

If necessary, open the FB interface editor (may have to click on the small arrow to expand
the view).

. Under Static, locate the timer structure that was just created for you.

. In the Retain column for this timer structure, change the selection to "Retain". Whenever

this FB is called later from another program block, an instance DB will be created with this
interface definition which contains the timer structure marked as retentive.

If the FB does not specify "Optimized block access", then the block access type is standard,
which is compatible with S7-300/400 classic configurations and allows symbolic and direct
access. To assign a multi-instance to a standard block access FB, follow these steps:

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

. In the Call options dialog, rename the timer if desired.

. Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure

appears in the FB Interface under Static.

. Open the block that will use this FB.

. Place this FB at the desired location. Doing so results in the creation of an instance data

block for this FB.

. Open the instance data block created when you placed the FB in the editor.

. Under Static, locate the timer structure of interest. In the Retain column for this timer

structure, check the box to make this structure retentive.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 243

Basic instructions

8.3 Counter operations

8.3

Counter operations

Table 8- 23 Counter instructions

LAD / FBD

SCL

Description

"Counter names"

Int

"IEC_Counter_ 0 _DB".CTU
(

CU:= bool_in,

R:= bool_in,

PV:= in,
Q=> bool_out,
CV=> out);

"IEC_Counter_ 0 DB".CTD
(

CD:= bool_in,

LD:= bool_in,

PV:= in,
Q=> bool_out,
Cv=> out) ;

"Counter name"

CTUD
Int
-y Q-
o K] oD =
—F o
= LD
P

"IEC_Counter_ 0 _DB".CTU
D(
CU:= bool_in,
CD:= bool_in,
R:= bool_in,
LD:= bool_in,
PV:= in_,
QU=> bool_ out,
QD=> bool_ out,
Cv=> out);

Use the counter instructions to count internal program events and
external process events. Each counter uses a structure stored in a
data block to maintain counter data. You assign the data block when
the counter instruction is placed in the editor.

e CTU is a count-up counter
e CTD is a count-down counter

e CTUD is a count-up-and-down counter

1 For LAD and FBD: Select the count value data type from the drop-down list below the instruction name.

2 STEP 7 automatically creates the DB when you insert the instruction.

3 In the SCL examples, "IEC_Counter_0_DB" is the name of the instance DB.

Table 8- 24 Data types for the parameters

Parameter Data type’ Description

CU, CD Bool Count up or count down, by one count
R (CTU, CTUD) Bool Reset count value to zero

LD (CTD, CTUD) Bool Load control for preset value

PV

Sint, Int, Dint, USInt, Uint, UDInt

Preset count value

Q, QU Bool True if CV >= PV
QD Bool True if CV <=0
cv Sint, Int, Dint, USInt, Uint, UDInt Current count value

1 The numerical range of count values depends on the data type you select. If the count value is an unsigned integer
type, you can count down to zero or count up to the range limit. If the count value is a signed integer, you can count
down to the negative integer limit and count up to the positive integer limit.

244

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.3 Counter operations

The number of counters that you can use in your user program is limited only by the amount
of memory in the CPU. Counters use the following amount of memory:

e For Sint or USInt data types, the counter instruction uses 3 bytes.
e For Int or UInt data types, the counter instruction uses 6 bytes.
e For Dint or UDInt data types, the counter instruction uses 12 bytes.

These instructions use software counters whose maximum counting rate is limited by the
execution rate of the OB in which they are placed. The OB that the instructions are placed in
must be executed often enough to detect all transitions of the CU or CD inputs. For faster
counting operations, see the/ CTRL_HSC instruction (Page 555).

Note

When you place counter instructions in an FB, you can select the multi-instance DB option,
the counter structure names can be different with separate data structures, but the counter
data is contained in a single DB and does not require a separate DB for each counter. This
reduces the processing time and data storage necessary for the counters. There is no
interaction between the counter data structures in the shared multi-instance DB.

Operation of the counters

Table 8-25 Operation of CTU (count up)

Counter

Operation

The CTU counter counts up by 1 when the value of parameter CU
change_s frorr_1 0 to 1. The CTU timing diagram shows the operation for cu | | 1 M |_|
an unsigned integer count value (where PV = 3).

e If the value of parameter CV (current count value) is greater than or
equal to the value of parameter PV (preset count value), then the
counter output parameter Q = 1.

o If the value of the reset parameter R changes from 0 to 1, then the
current count value is reset to 0.

R

-

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

245

Basic instructions

83

Counter operations

Table 8-26 Operation of CTD (count down)

Counter

The CTD counter counts down by 1 when the value of parame-
ter CD changes from 0 to 1. The CTD timing diagram shows
the operation for an unsigned integer count value (where PV =

3).

e If the value of parameter CV (current count value) is equal
to or less than 0, the counter output parameter Q = 1.

o |[f the value of parameter LOAD changes from 0 to 1, the

value at parameter PV (preset value) is loaded to the coun- 1
ter as the new CV (current count value).

Operation
CD_!‘I_!‘l_!‘I 1 I'IJ_I
w S L
130 0 o3
2 i Lz
1

Table 8- 27 Operation of CTUD (count up and down)

value of parameter PV, then
the counter output parameter
Qu =1.

If the value of parameter CV
is less than or equal to zero,
then the counter output pa-
rameter QD = 1.

If the value of parameter
LOAD changes from 0 to 1,
then the value at parameter
PV is loaded to the counter
as the new CV.

If the value of the reset pa-
rameter R is changes from 0
to 1, the current count value
is reset to 0.

Ccv

Counter Operation
The CTUD counter counts up or
down by 1 on the 0 to 1 transi- cu [l II—I rl .I_I rl !_I
tion of the count up (CU) or : : : : '
count down (CD) inputs. The cD ' X : X M1_n i
CTUD timing diagram shows the ' , ! , ' ' '
operation for an unsigned inte- , ! ! ! ' : , M
ger count value (where PV = 4). R . . , . : L J
1
e If the value of parameter CV E . : E E : :
1
is equal to or greater than the LOAD : ; X : : |_| 1 :
: : 1 : :
1 1
1
1
1

246

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.3 Counter operations

Counter data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the counter data stored in the previous run mode session is lost,
unless the counter data structure is specified as retentive (CTU, CTD, and CTUD counters).

When you accept the defaults in the call options dialog after you place a counter instruction
in the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your counter data retentive, you must either use a global DB or a Multi-
instance DB.

Assign a global DB to store counter data as retentive data

This option works regardless of where the counter is placed (OB, FC, or FB).
1. Create a global DB:

Double-click "Add new block" from the Project tree
Click the data block (DB) icon
For the Type, choose global DB

If you want to be able to select individual items in this DB as retentive, be sure the
symbolic-access-only box is checked.

Click OK

2. Add counter structure(s) to the DB:

In the new global DB, add a new static tag using one of the counter data types. Be
sure to consider the Type you want to use for your Preset and Count values.

In the "Retain" column, check the box so that this structure will be retentive.

Repeat this process to create structures for all the counters that you want to store in
this DB. You can either place each counter structure in a unique global DB, or you can
place multiple counter structures into the same global DB. You can also place other
static tags besides counters in this global DB. Placing multiple counter structures into
the same global DB allows you to reduce your overall number of blocks.

Rename the counter structures if desired.

3. Open the program block for editing where you want to place a retentive counter (OB, FC,
or FB).

4. Place the counter instruction at the desired location.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 247

Basic instructions

8.3 Counter operations

5. When the call options dialog appears, click the cancel button. You should now see a new

counter instruction which has "???" both just above and just below the instruction name.

6. On the top of the new counter instruction, type the name (do not use the helper to

browse) of the global DB and counter structure that you created above (example:
"Data_block_3.Static_1"). This causes the corresponding preset and count value type to
be filled in (example: Ulnt for an IEC_UCounter structure).

Counter Data Type Corresponding Type for the Preset and Count Values
IEC_Counter INT
IEC_SCounter SINT
IEC_DCounter DINT
IEC_UCounter UINT
IEC_USCounter USINT
IEC_UDCounter UDINT

Assign a multi-instance DB to store counter data as retentive data

This option only works if you place the counter in an FB.

This option depends upon whether the FB properties specify "Optimized block access"
(allows symbolic access only). To verify how the access attribute is configured for an existing
FB, right-click on the FB in the Project tree, choose properties, and then choose Attributes.

If the FB specifies "Optimized block access" (allows symbolic access only):

1.
2.
3.

Open the FB for edit.
Place the counter instruction at the desired location in the FB.

When the Call options dialog appears, click on the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the counter if desired.

5. Click OK. The counter instruction appears in the editor with type INT for the preset and

count values, and the IEC_COUNTER structure appears in the FB Interface under Static.

If desired, change the type in the counter instruction from INT to one of the other types.
The counter structure will change correspondingly.

If necessary, open the FB interface editor (may have to click on the small arrow to expand
the view).

8. Under Static, locate the counter structure that was just created for you.

248

In the Retain column for this counter structure, change the selection to "Retain".
Whenever this FB is called later from another program block, an instance DB will be
created with this interface definition which contains the counter structure marked as
retentive.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.3 Counter operations

If the FB does not specify "Optimized block access", then the block access type is standard,
which is compatible with S7-300/400 classic configurations and allows symbolic and direct
access. To assign a multi-instance to a standard block access FB, follow these steps:

1.
2.
3.

Open the FB for edit.
Place the counter instruction at the desired location in the FB.

When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the counter if desired.

Click OK. The counter instruction appears in the editor with type INT for the preset and
count value, and the IEC_COUNTER structure appears in the FB Interface under Static.

If desired, change the type in the counter instruction from INT to one of the other types.
The counter structure will change correspondingly.

7. Open the block that will use this FB.

9.

Place this FB at the desired location. Doing so results in the creation of an instance data
block for this FB.

Open the instance data block created when you placed the FB in the editor.

10.Under Static, locate the counter structure of interest. In the Retain column for this counter

structure, check the box to make this structure retentive.

Type shown in counter instruction (for preset Corresponding structure Type shown in FB

and count values) interface
INT IEC_Counter
SINT IEC_SCounter
DINT IEC_DCounter
UINT IEC_UCounter
USINT IEC_USCounter
UDINT IEC_UDCounter

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 249

Basic instructions

8.4 Comparator operations

8.4 Comparator operations

8.4.1 Compare values instructions

Table 8- 28 Compare instructions

LAD FBD SCL Description
N o out := inl = in2; Compares two values of the same data type. When the
- Byte or LAD contact comparison is TRUE, then the contact is
-I Byte |' SINTT — N IF inl = in2 activated. When the FBD box comparison is TRUE,
"INz NI N2 = THEN out := 1; |thentheboxoutputis TRUE.
ELSE out := 0;
END IF;

1 For LAD and FBD: Click the instruction name (such as "==") to change the comparison type from the drop-down list.

Click the "???" and select data type from the drop-down list.

Table 8-29 Data types for the parameters

Parameter Data type Description

IN1, IN2 Byte, Word, DWord, Sint, Int, Dint, USInt, Uint, UDInt, Real, Values to compare
LReal, String, WString, Char, Char, Time, Date, TOD, DTL,
Constant

Table 8- 30 Comparison descriptions

Relation type The comparison is true if ...
= IN1 is equal to IN2
<> IN1 is not equal to IN2
>= IN1 is greater than or equal to IN2
<= IN1 is less than or equal to IN2
> IN1 is greater than IN2
< IN1 is less than IN2

S7-1200 Programmable controller
250 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.4 Comparator operations

8.4.2 IN_Range (Value within range) and OUT_Range (Value outside range)

Table 8- 31 Value within Range and value outside range instructions

LAD / FBD SCL Description
TR out := IN_RANGE (min, Tests whether an input value is in or out of a specified value range.
T val, max); If the comparison is TRUE, then the box output is TRUE.
MIn
VAL
WA
out := OUT RANGE (min,
OUT_RANGE -
29 val, max);
MIn
VAL
WA

' For LAD and FBD: Click the "???" and select the data type from the drop-down list.

Table 8- 32 Data types for the parameters

Parameter Data type' Description
MIN, VAL, MAX | Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Comparator inputs
Constant

T The input parameters MIN, VAL, and MAX must be the same data type.
e The IN_RANGE comparison is true if: MIN <= VAL <= MAX
e The OUT_RANGE comparison is true if: VAL < MIN or VAL > MAX

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

251

Basic instructions

8.4 Comparator operations

8.4.3

OK (Check validity) and NOT_OK (Check invalidity)

Table 8- 33 OK (check validity) and Not OK (check invalidity) instructions

LAD FBD SCL Description
g "L Not available Tests whether an input data reference is a valid real num-
— ok |- oK ber according to IEEE specification 754.
g "y Not available
— NOT_OK |— MOT_CkK

1 For LAD and FBD: When the LAD contact is TRUE, the contact is activated and passes power flow. When the FBD box
is TRUE, then the box output is TRUE.

Table 8- 34 Data types for the parameter
Parameter Data type Description
IN Real, LReal Input data
Table 8- 35 Operation
Instruction The Real number test is TRUE if:
OK The input value is a valid real number
NOT_OK The input value is not a valid real number 1

1 A Real or LReal value is invalid if it is +/- INF (infinity), NaN (Not a Number), or if it is a denormalized value. A denormal-
ized value is a number very close to zero. The CPU substitutes a zero for a denormalized value in calculations.

252

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.4.4

8.44.1

8.4 Comparator operations

Variant and array comparison instructions

Equality and non-equality comparison instructions

The S7-1200 CPU provides instructions for querying the data type of a tag to which a Variant
operand points for either equality or non-equality to the data type of the other operand.

In addition, the S7-1200 CPU provides instructions for querying the data type of an array
element for either equality or non-equality to the data type of the other operand.

In these instructions, you are comparing <Operand1> to <Operand2>. <Operand1> must
have the Variant data type. <Operand2> can be an elementary data type of a PLC data type.
In LAD and FBD, <Operand1> is the operand above the instruction. In LAD, <Operand2> is
the operand below the instruction.

For all instructions, the result of logic operation (RLO) is 1 (true) if the equality or non-
equality test passes, and is 0 (false) if not.

The equality and non-equality type comparison instructions are as follows:
e EQ_Type (Compare data type for EQUAL with the data type of a tag)
® NE_Type (Compare data type for UNEQUAL with the data type of a tag)

e EQ_ElemType (Compare data type of an ARRAY element for EQUAL with the data type
of a tag)

® NE_ElemType (Compare data type of an ARRAY element for UNEQUAL with the data
type of a tag)

Table 8- 36 EQ and NE instructions

LAD FBD SCL Description
#0perand #Operand Not avail- | Tests whether the tag pointed to by the Variant
4 eq_mype EQ_Type able at Operand1 is of the same data type as the
"Operand2® "Operand2” — IN2 ouT - tag at Operand2.
#Operand #0perand1 Not avail- | Tests whether the tag pointed to by the Variant
- NE_Type | ME_Type able at Operand1 is of a different data type as the
“Dperand2® “Operand2® —{IN2 out tag at Operand2.
#0perand1 #0Operand1 Not avail- | Tests whether the array element pointed to by
| EQ_ElemType |- EQ_ElemType able the Variant at Operand1 is of the same data
"Operand2” "Operand2” N2 ouT - type as the tag at Operand2.
£0perand1 #Operand Not avail- | Tests whether the array element pointed to by
- NE_ElemType |- NE_ElemType L able the Variant at Operand1 is of a different data
"Operand2” "Operand2” —{IN2 ouT type as the tag at Operand2.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 253

Basic instructions

8.4 Comparator operations

Table 8- 37 Data types for the parameters

Parameter Data type Description
Operand1 Variant First operand
Operand2 Bit strings, integers, floating-point numbers, | Second operand
timers, date and time, character strings,
ARRAY, PLC data types
8.44.2 Null comparsion instructions
You can use the instructions IS_NULL and NOT_NULL to determine whether or not the input
actually points to an object or not.
For both instructions, <Operand> must have the Variant data type.
Table 8- 38 IS_NULL (Query for EQUALS ZERO pointer) and NOT_NULL (Query for EQUALS ZERO pointer) instructions
LAD FBD SCL Description
#0perand #0perand Not avail- | Tests whether the tag pointed to by the Variant
is_nuLL 15_NULL able at Operand is null and therefore not an object.
ouT -
#0perand #Operand Not avail- | Tests whether the tag pointed to by the Variant
4 NOT_NULL | NOT NULL able at Operand is not null and therefore does point
ouTr- to an object.
Table 8- 39 Data types for the parameters
Parameter Data type Description
Operand Variant Operand to evaluate for null or not null.
8.4.43 IS_ARRAY (Check for ARRAY)
You can use the "Check for ARRAY" instruction to query whether the Variant points to a tag
of the Array data type.
The <Operand> must have the Variant data type.
The instructions returns 1 (true) if the operand is an array.
Table 8- 40 IS_ARRAY (Check for ARRAY)
LAD FBD SCL Description
#0perand #0perand IS_ARRAY (_variant_in_) Tests whether the tag pointed to by the Variant
4 1s_ARRAY | IS_ARRAY at Operand is an array.
ouT -

254

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.5 Math functions

Table 8-41 Data types for the parameters

Parameter Data type Description

Operand Variant Operand to evaluate for whether it is an array.
8.5 Math functions

8.5.1 CALCULATE (Calculate)

Table 8- 42 CALCULATE instruction

LAD / FBD SCL Description
Use the stand- | The CALCULATE instruction lets you create a math function that oper-

mL[;L?'?LME ard SCL math ates on inputs (IN1, IN2, .. INn) and produces the result at OUT, ac-
EM END = expressions to | cording to the equation that you define.

OUT = <777 qreate theequa- |, select a data type first. All inputs and the output must be the same

= tion.
data type.

IM1 ouT
IN2zk e To add another input, click the icon at the last input.

Table 8-43 Data types for the parameters

Parameter Data type’
IN1, IN2, ..INn Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord

T The IN and OUT parameters must be the same data type (with implicit conversions of the input parameters). For exam-
ple: A SINT value for an input would be converted to an INT or a REAL value if OUT is an INT or REAL

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

255

Basic instructions

8.5 Math functions

Click the calculator icon to open the dialog and define your math function. You enter your
equation as inputs (such as IN1 and IN2) and operations. When you click "OK" to save the
function, the dialog automatically creates the inputs for the CALCULATE instruction.

The dialog shows an example and a list of possible instructions that you can include based
on the data type of the OUT parameter:

Edit “Calculate” instraction

ouT=-

Example:

(I + N2} * (M1 - IN2)

Possible instructions for Real:

+,~ ", I, Abs, Neg. Exp, **, Frac. Ln. Sin, ASin, Cos, ACos, Ten, ATan, Sqr. Sqrt. Round, Ceil, Floor, Trunc

[ok | cancel

Note

You also must create an input for any constants in your function. The constant value would
then be entered in the associated input for the CALCULATE instruction.

By entering constants as inputs, you can copy the CALCULATE instruction to other locations
in your user program without having to change the function. You then can change the values
or tags of the inputs for the instruction without modifying the function.

When CALCULATE is executed and all the individual operations in the calculation complete
successfully, then the ENO = 1. Otherwise, ENO = 0.

For an example of the CALCULATE instruction, see "Creating a complex equation with a
simple instruction (Page 42)".

S7-1200 Programmable controller
256 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.5 Math functions

8.5.2 Add, subtract, multiply and divide instructions

Table 8- 44 Add, subtract, multiply and divide instructions

LAD / FBD SCL Description
out := inl + in2; |, ADD: Addition (IN1+ IN2 = OUT)
400 out := inl - in2; .
]]] e SUB: Subtraction (IN1 - IN2 = OUT)
out := inl * in2;
Er EMO= | sut := inl / in2; e MUL: Multiplication (IN1 * IN2 = OUT)
M ouT e DIV: Division (IN1/IN2 = OUT)
IM2ze An Integer division operation truncates the fractional part of the quotient
to produce an integer output.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 45 Data types for the parameters (LAD and FBD)

Parameter Data type' Description
IN1, IN2 Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Constant Math operation inputs
ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Math operation output

1 Parameters IN1, IN2, and OUT must be the same data type.

M2 To add an ADD or MUL input, click the "Create" icon or right-click on an input
[:E stub for one of the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete” command.

When enabled (EN = 1), the math instruction performs the specified operation on the input
values (IN1 and IN2) and stores the result in the memory address specified by the output
parameter (OUT). After the successful completion of the operation, the instruction sets ENO
=1.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 257

Basic instructions

8.5 Math functions

Table 8- 46 ENO status

ENO Description

1 No error

0 The Math operation result value would be outside the valid number range of the data type selected. The
least significant part of the result that fits in the destination size is returned.

0 Division by 0 (IN2 = 0): The result is undefined and zero is returned.

0 Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.

0 ADD Real/LReal: If both IN values are INF with different signs, this is an illegal operation and NaN is re-
turned.

0 SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal operation and NaN is re-
turned.

0 MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal operation and NaN is re-
turned.

0 DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN is returned.

8.5.3 MOD (return remainder of division)

Table 8-47 Modulo (return remainder of division) instruction

LAD / FBD SCL Description
2 out := inl MOD in2; You can use the MOD instruction to return the remainder of an integer
""3,5' division operation. The value at the IN1 input is divided by the value at
—EH END — the IN2 input and the remainder is returned at the OUT output.
{11 out
{Nz

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 48 Data types for parameters

Parameter Data type’ Description
IN1 and IN2 Sint, Int, DInt, USInt, Uint, UDInt, Constant Modulo inputs
ouT Sint, Int, DInt, USInt, Ulnt, UDInt Modulo output

1 The IN1, IN2, and OUT parameters must be the same data type.

Table 8- 49 ENO values

ENO Description
1 No error
0 Value IN2 = 0, OUT is assigned the value zero

S7-1200 Programmable controller

258 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.5 Math functions
8.5.4 NEG (Create twos complement)
Table 8- 50 NEG (create twos complement) instruction
LAD / FBD SCL Description
— — -(in); The NEG instruction inverts the arithmetic sign of the value at parameter IN and stores
HEG | .
| e the result in parameter OUT.
—EN END —
N our|
' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.
Table 8- 51 Data types for parameters
Parameter Data type’ Description
IN Sint, Int, DInt, Real, LReal, Constant Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

T The IN and OUT parameters must be the same data type.

Table 8- 52 ENO status

ENO Description

1 No error

0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: NEG (-128) results in +128 which exceeds the data type maximum.

8.5.5 INC (Increment) and DEC (Decrement)

Table 8- 53 INC and DEC instructions

LAD / FBD SCL Description
R in_out := in out + 1; |Increments a signed or unsigned integer number value:
W IN_OUT value +1 = IN_OUT value
—EN ENO -
{INOUT
T3 v in_out := in out - 1; |Decrements a signed or unsigned integer number value:
| e IN_OUT value - 1 = IN_OUT value
—EN END =
INAOUT

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 259

Basic instructions

8.5 Math functions

Table 8- 54 Data types for parameters

Parameter Data type Description
IN/OUT Sint, Int, Dint, USInt, Uint, UDInt Math operation input and output

Table 8- 55 ENO status

ENO Description

1 No error

0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: INC (+127) results in +128, which exceeds the data type maximum.

8.5.6 ABS (Form absolute value)

Table 8- 56 ABS (absolute value) instruction

LAD / FBD SCL Description
——— out := ABS(in); Calculates the absolute value of a signed integer or real number at parameter
ABS .
77 IN and stores the result in parameter OUT.
—EM END =
1M ouT |

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 57 Data types for parameters

Parameter Data type’ Description
IN Sint, Int, DInt, Real, LReal Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

1 The IN and OUT parameters must be the same data type.

Table 8- 58 ENO status

ENO Description

1 No error

0 The math operation result value is outside the valid number range of the selected data type.
Example for Sint: ABS (-128) results in +128 which exceeds the data type maximum.

S7-1200 Programmable controller
260 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.5 Math functions
8.5.7 MIN (Get minimum) and MAX (Get maximum)
Table 8-59 MIN (get minimum) and MAX (get maximum) instructions
LAD / FBD SCL Description
out:= MIN(The MIN instruction compares the value of two parameters IN1
MIN inl:= variant in and IN2 and assigns the minimum (lesser) value to parameter
277 - — = 9 P
o = in2:= variant in_ OUT.
n END = [,...in32]);
1M1 ouT
M2z
out:= MAX(The MAX instruction compares the value of two parameters IN1
r"lif inl:= variant in_, and IN2 and assigns the maximum (greater) value to parameter
- = in2:= variant in_ OUT.
- END= [,...in32]);
1M1 out
IM2:F
1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.
Table 8- 60 Data types for the parameters
Parameter Data type’ Description
IN1, IN2 Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Time, Math operation inputs (up to 32 inputs)
[...IN32] Date, TOD, Constant
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Time, Math operation output
Date, TOD

T The IN1, IN2, and OUT parameters must be the same data type.

Ihzse To add an input, click the "Create" icon or right-click on an input stub for one of
EE the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 8- 61 ENO status

ENO Description
1 No error
0 For Real data type only:

e At least one input is not a real number (NaN).
e The resulting OUT is +/- INF (infinity).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 261

Basic instructions

8.5 Math functions

8.5.8

LIMIT (Set limit value)

Table 8- 62 LIMIT (set limit value) instruction

LAD / FBD SCL Description

[y o= LIMIT(MN:= variant in , The Limit instruction tests if the value of parameter IN is inside the
E i _— IN:= variant_in_, value range specified by parameters MIN and MAX and if not,

e aur| MX:= variant_in_, clamps the value at MIN or MAX.

- OUT:= variant out);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 63 Data types for the parameters

Parameter Data type' Description

MN, IN, and MX Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Time, Date, Math operation inputs
TOD-Constant

ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Time, Date, Math operation output

TOD

1 The MN, IN, MX, and OUT parameters must be the same data type.

If the value of parameter IN is within the specified range, then the value of IN is stored in
parameter OUT. If the value of parameter IN is outside of the specified range, then the OUT
value is the value of parameter MIN (if the IN value is less than the MIN value) or the value
of parameter MAX (if the IN value is greater than the MAX value).

Table 8- 64 ENO status
ENO Description
No error
0 Real: If one or more of the values for MIN, IN and MAX is NaN (Not a Number), then NaN is returned.
0 If MIN is greater than MAX, the value IN is assigned to OUT.
SCL examples:
e MyVal := LIMIT(MN:=10,IN:=53, MX:=40); //Result: MyVal = 40
e MyVal := LIMIT(MN:=10,IN:=37, MX:=40); //Result: MyVal = 37
e MyVal := LIMIT(MN:=10,IN:=8, MX:=40); //Result: MyVal = 10
S7-1200 Programmable controller
262 System Manual, V4.2, 09/2016, A5E02486680-AK

Basic instructions

8.5.9

8.5 Math functions

Exponent, logarithm, and trigonometry instructions

You use the floating point instructions to program mathematical operations using a Real or
LReal data type:

SQR: Form square (IN 2= OUT)

SQRT: Form square root (vIN = QUT)

LN: Form natural logarithm (LN(IN) = OUT)

EXP: Form exponential value (e N=0UT), where base e = 2.71828182845904523536
EXPT: exponentiate (IN1 N2= QUT)

EXPT parameters IN1 and OUT are always the same data type, for which you must
select Real or LReal. You can select the data type for the exponent parameter IN2 from
among many data types.

FRAC: Return fraction (fractional part of floating point number IN = OUT)

SIN: Form sine value (sin(IN radians) = OUT)

ASIN: Form arcsine value (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
COS: Form cosine (cos(IN radians) = OUT)

ACOS: Form arccosine value (arccos(IN) = OUT radians), where the cos(OUT radians) =
IN

TAN: Form tangent value (tan(IN radians) = OUT)

ATAN: Form arctangent value (arctan(IN) = OUT radians), where the tan(OUT radians) =
IN

Table 8- 65 Examples of floating-point math instructions

{IN2

LAD / FBD SCL Description

T out := SQR(in); Square: IN 2= QUT

Feal | or For example: If IN = 9, then OUT = 81.

—{EN ENQ - out := in * in;

L ouT |

BT out := inl ** in2; General exponential: IN1 N2= OUT

| Aeal =777 For example: If IN1 = 3 and IN2 = 2, then OUT = 9.
—EN END

{IN1 outT

T For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

2 For SCL: You can also use the basic SCL math operators to create the mathematical expressions.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

263

Basic instructions

8.5 Math functions

Table 8- 66 Data types for parameters

Parameter Data type Description
IN, IN1 Real, LReal, Constant Inputs
IN2 Sint, Int, DInt, USInt, UInt,UDInt, Real, LReal, Constant EXPT exponent input
ouT Real, LReal Outputs
Table 8- 67 ENO status
ENO Instruction Condition Result (OUT)
1 All No error Valid result
0 SQR Result exceeds valid Real/LReal range +INF
IN is +/- NaN (not a number) +NaN
SQRT IN is negative -NaN
IN is +/- INF (infinity) or +/- NaN +/- INF or +/- NaN
LN IN is 0.0, negative, -INF, or -NaN -NaN
IN is +INF or +NaN +INF or +NaN
EXP Result exceeds valid Real/LReal range +INF
IN is +/- NaN +/- NaN
SIN, COS, TAN IN is +/- INF or +/- NaN +/- INF or +/- NaN
ASIN, ACOS IN is outside valid range of -1.0 to +1.0 +NaN
IN is +/- NaN +/- NaN
ATAN IN is +/- NaN +/- NaN
FRAC IN is +/- INF or +/- NaN +NaN
EXPT IN1 is +INF and IN2 is not -INF +INF
IN1 is negative or -INF +NaN if IN2 is Real/LReal,
-INF otherwise
IN1 or IN2 is +/- NaN +NaN
IN1 is 0.0 and IN2 is Real/LReal (only) +NaN
S7-1200 Programmable controller
264 System Manual, V4.2, 09/2016, A5E02486680-AK

Basic instructions
8.6 Move operations

8.6 Move operations

8.6.1 MOVE (Move value), MOVE_BLK (Move block), UMOVE_BLK (Move block
uninterruptible), and MOVE_BLK_VARIANT (Move block)

Use the Move instructions to copy data elements to a new memory address and convert
from one data type to another. The source data is not changed by the move process.

e The MOVE instruction copies a single data element from the source address specified by
the IN parameter to the destination addresses specified by the OUT parameter.

¢ The MOVE_BLK and UMOVE_BLK instructions have an additional COUNT parameter.
The COUNT specifies how many data elements are copied. The number of bytes per
element copied depends on the data type assigned to the IN and OUT parameter tag
names in the PLC tag table.

Table 8- 68 MOVE, MOVE_BLK, UMOVE_BLK, and MOVE_BLK_VARIANT instructions

LAD / FBD SCL Description
NITE outl := in; Copies a data element stored at a specified
—EN EMO = address to a new address or multiple address-
I 1 0UT1 es.!
G MOVE_BLK (Interruptible move that copies a block of data
—ZEN EnODL in:= variant in, elements to a new address.
1] ouT count:= uint_in,
COUNT out=> variant out);
OWEVE BLE UMOVE_BLK (Uninterruptible move that copies a block of data
—EN EMO = in:= variant_in, elements to a new address.
1M ouT count:= uint_in,
EOUNT out=> variant_out);
MOVE BLK
VIGVE LK VARIANT OVE_] (. _ Moves_ the_ contents of a source memory area to
-EN ENO [SRC:=_variant_in, a destination memory area.
ERDTJNT RE'E—:;' COUNT:= udint in, You can copy a complete array or elements of
SRC.INDEX SRC_INDEX:= dint in, |an array to another array of the same data type.
DEST INDEX The size (number of elements) of source and
DEST_INDEX:= dint in, destination array may be different. You can

DEST=> variant out); |COpYy multiple or single elements within an array.
- - You use Variant data types to point to both the
source and destination arrays.

1 MOVE instruction: To add another output in LAD or FBD, click the "Create" icon by the output parameter. For SCL, use
multiple assignment statements. You might also use one of the loop constructions.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 265

Basic instructions
8.6 Move operations

Table 8- 69 Data types for the MOVE instruction

Parameter Data type Description

IN Sint, Int, Dint, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, Source address
DWord, Char, WChar, Array, Struct, DTL, Time, Date, TOD,
IEC data types, PLC data types

ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, Destination address
DWord, Char, WChar, Array, Struct, DTL, Time, Date, TOD,
IEC data types, PLC data types

3£ 0UT1 To add MOVE outputs, click the "Create" icon or right-click on an output stub for
one of the existing OUT parameters and select the "Insert output" command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

Table 8- 70 Data types for the MOVE_BLK and UMOVE_BLK instructions

Parameter Data type Description
IN Sint, Int, Dint, USInt, Ulnt, UDInt, Real, LReal Byte, Word, Source start address
DWord, Time, Date, TOD, WChar
COUNT Ulint Number of data elements to copy
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, Destination start address
DWord, Time, Date, TOD, WChar

Table 8- 71 Data types for the MOVE_BLK_VARIANT instruction

Parameter Data type Description

SRC Variant (which points to an array or individual array element) Source block from which to copy

COUNT UDInt Number of data elements to copy

SRC_INDEX Dint Zero-based index into the SRC array

DEST_INDEX Dint Zero-based index into the DEST
array

RET_VAL Int Error information

DEST Variant (which points to an array or individualt array element) Destination area into which to copy
the contents of the source block

S7-1200 Programmable controller
266 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6 Move operations

Note
Rules for data copy operations

To copy the Bool data type, use SET_BF, RESET_BF, R, S, or|output coil (LAD)
(Page 230)

To copy a single elementary data type, use MOVE

To copy an array of an elementary data type, use MOVE_BLK or UMOVE_BLK
To copy a structure, use MOVE

To copy a string, use'S_MOVE (Page 346)

To copy a single character in a string, use MOVE

The MOVE_BLK and UMOVE_BLK instructions cannot be used to copy arrays or
structures to the I, Q, or M memory areas.

MOVE_BLK and UMOVE_BLK instructions differ in how interrupts are handled:

Interrupt events are queued and processed during MOVE_BLK execution. Use the
MOVE_BLK instruction when the data at the move destination address is not used within
an interrupt OB subprogram or, if used, the destination data does not have to be
consistent. If a MOVE_BLK operation is interrupted, then the last data element moved is
complete and consistent at the destination address. The MOVE_BLK operation is
resumed after the interrupt OB execution is complete.

Interrupt events are queued but not processed until UMOVE_BLK execution is complete.
Use the UMOVE_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram. For
more information, see the section on data consistency (Page 198).

ENO is always true following execution of the MOVE instruction.

Table 8- 72 ENO status

ENO Condition Result

1 No error All COUNT elements were successfully copied.

0 Either the source (IN) range or the destination (OUT) Elements that fit are copied. No partial ele-
range exceeds the available memory area. ments are copied.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 267

Basic instructions

8.6 Move operations

268

Table 8- 73 Condition codes for the MOVE_BLK_VARIANT instruction

RET_VAL Description

(W#16#...)

0000 No error

80B4 Data types do not correspond.

8151 Access to the SRC parameter is not possible.

8152 The operand at the SRC parameter is an invalid type.

8153 Code generation error at the SRC parameter

8154 The operand at the SRC parameter has the data type Bool.

8281 The COUNT parameter has an invalid value.

8382 The value at the SRC_INDEX parameter is outside the limits of the
Variant.

8383 The value at parameter SRC_INDEX is outside the high limit of the
array.

8482 The value at the DEST_INDEX parameter is outside the limits of
the Variant.

8483 The value at parameter DEST_INDEX is outside the high limit of
the array.

8534 The DEST parameter is write-protected.

8551 Access to the DEST parameter is not possible.

8552 The operand at the DEST parameter is an invalid type.

8553 Code generation error at the DEST parameter

8554 The operand at the DEST parameter has the data type Bool.

*You can display error codes in the program editor as integer or hexadecimal values.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6 Move operations

8.6.2 Deserialize

You can use the "Deserialize" instruction to convert the sequential representation of a PLC
data type (UDT) back to a PLC data type and to fill its entire contents. If the comparison is
TRUE, then the box output is TRUE.

The memory area which holds the sequential representation of a PLC data type must have
the Array of Byte data type and you must declare the data block to have standard (not
optimized) access. Make sure that there is enough memory space prior to the conversion.

The instruction enables you to convert multiple sequential representations of converted PLC
data types back to their original data types.

Note

If you only want to convert back a single sequential representation of a PLC data type (UDT),
you can also use the instruction "TRCV: Receive data via communication connection".

Table 8- 74 DESERIALIZE instruction

LAD / FBD SCL Description
Deserialize ret val := Deserialize(Converts the sequential represen-
SRC_ARRAY:= variant in , tation of a PLC data type (UDT)
- EN ENO * - — - =)
= e DEST_VARIABLE=> variant out pack t_o a PLC data type and fills
its entire contents
POS DEST_VARIABLE o
POS:= dint inout);

Table 8- 75 Parameters for the DESERIALIZE instruction

Parameter Type Data type Description

SRC_ARRAY IN Variant Global data block that con-
tains the data stream

DEST_VARIABLE INOUT Variant Tag in which to store the
converted PLC data type
(UDT)

POS INOUT Dint Number of bytes that the
converted PLC data type
uses

RET_VAL ouT Int Error information

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 269

Basic instructions

8.6 Move operations

Table 8- 76 RET_VAL parameter

RET_VAL" Description

(W#16#...)

0000 No error

80B0 The memory areas for the SRC_ARRAY and DEST_VARIABLE parameters overlap.
8136 The data block at the DEST_VARIABLE parameter is not a block with standard access.
8150 The Variant data type at the SRC_ARRAY parameter contains no value.

8151 Code generation error at the SRC_ARRAY parameter.

8153 There is not enough free memory available at the SRC_ARRAY parameter.

8250 The Variant data type at the DEST_VARIABLE parameter contains no value.

8251 Code generation error at the DEST_VARIABLE parameter.

8254 Invalid data type at the DEST_VARIABLE parameter.

8382 The value at parameter POS is outside the limits of the array.

“You can view the error codes as either integer or hexadecimal in the program editor.

Example: Deserialize instruction
The following example shows how the instruction works:
Network 1:

MOVE
EN
1N

EN
SRC_ARAAY
POS

ENg —

oum *2Bufferfos” "Buffer” Fizld Ret_Val EErrar

eBufferPas DEST WARIABLE — "Target” Client

The "MOVE" instruction moves the value "0" to the "#BufferPos" data block tag. The
Deserialize instruction then deserializes the sequential representation of the customer data
from the "Buffer" data block and writes it to the "Target" data block. The Deserialize
instruction calculates the number of bytes that the converted data uses and stores it in the

"#BufferPos" data block tag.
Network 2:

Deserialize Deserialize

| Si_l'i_ng |

Slabel

EM
SRC_ARRAY
POS

ENO
Ret_Val
DEST_VARIABLE

EN
SRC_ARRAY
FOS

Buffer” Field
#BufferPos

#Ermror "Buffer”_Field

#label #BuffierPos

= Deserialize
String
glLabel

Ii EN
"Bufier Field SRC_ARRAY

eEufierfos POS

Ret_Wal

DEST_VARIABLE

DEST_VARIABLE

ENQ =t
#FErmor

“Target".
Article(#DeliverPa
5]

END mef
Ret_Wal RErmor
“Target”
Bill[#Deliverfos]

The "Deserialize" instruction deserializes the sequential representation of the data stream
pointed to by "Buffer" and writes the characters to the "#Label" operand. The logic compares
the characters using the comparison instructions "arti" and "Bill". If the comparison for "arti" =
TRUE, the data is article data that is to be deserialized and written to the "Article" data

structure of the "Target" data block. If the comparison for "Bill"

TRUE, the data is billing

data that is to be deserialized and written to the "Bill" data structure of the "Target" data

block.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

270

Basic instructions
8.6 Move operations

Function block (or Function) interface:

Mame Data type
al - Input
g] = DeliverPos Int
4l k Output
40 b InCut
4l b Static
4l = Temp
4 = BufferPos Dint
<l = Error Int
gl = Label string[4]

Custom PLC data types:

The structure of the two PLC data types (UDTs) for this example are as follows:

Article Client
Marne Data type Mame Data type
LT Mumber Dint 1 | Title Int
2 |« Declaration String 2 |41 Firstname String[10]
ERE T | Calli Int 3 <l surname String[10]
Data blocks:

The two data blocks for this example are as follows:

Target Buffer
MName Diata type Marme Data type
1 40 » Static 1 40 = Static
2 4@ s » Client *Client® 2 4= » Field Array[0..294] of Byte
3 <= » Article Array[0.10] of "Article”
4 |0 = » Bill Array{0.10] of Int

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 271

Basic instructions

8.6 Move operations

8.6.3 Serialize

You can use the "Serialize" instruction to convert several PLC data types (UDTs) to a
sequential representation without any loss of structure.

You can use the instruction to temporarily save multiple structured data items from your
program to a buffer, for example to a global data block, and send them to another CPU. The
memory area in which the converted PLC data types are stored must have the ARRAY of
BYTE data type and be declared with standard access. Make sure that there is enough
memory space prior to the conversion.

The POS parameter contains information about the number of bytes that the converted PLC
data types use.

Note

If you only want to send a single PLC data type (UDT), you can use the instruction "TSEND:
Send data via communication connection".

Table 8- 77 SERIALIZE instruction

LAD / FBD SCL Description
g ret val := Serialize(Converts a PLC data type
den enok SRC_VARIABLE=> variant in , (UDT) to a sequential repre-
DEST ARRAY:= variant out , sentation.
SRC_VARIABLE Ret_Val = - - =
POS:= dint inout);
POS DEST_ARRAY - - -

Table 8- 78 Parameters for the SERIALIZE instruction

Parameter

Type Data type Description

SRC_VARIABLE

IN Variant PLC data type (UDT) that is
to be converted to a serial
representation

DEST_ARRAY

INOUT Variant Data block in which the gen-
erated data stream is to be
stored

POS

INOUT Dint Number of bytes that the
converted PLC data types
use. The calculated POS
parameter is zero-based.

RET_VAL

ouT Int Error information

272

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6 Move operations

Table 8-79 RET_VAL parameter

RET_VAL" Description

(W#16#...)

0000 No error

80B0O The memory areas for the SRC_VARIABLE and DEST_ARRAY parameters overlap.
8150 The Variant data type at the SRC_VARIABLE parameter contains no value.

8152 Code generation error at the SRC_VARIABLE parameter.

8236 The data block at the DEST_ARRAY parameter is not a block with standard access.
8250 The Variant data type at the DEST_ARRAY parameter contains no value.

8252 Code generation error at the DEST_ARRAY parameter.

8253 There is not enough free memory available at the DEST_ARRAY parameter.

8254 Invalid data type at the DEST_VARIABLE parameter.

8382 The value at parameter POS is outside the limits of the array.

“You can view the error codes as either integer or hexadecimal in the program editor.

Example: Serialize instruction

The following example shows how the instruction works:

Network 1:
MOVE Serialize
EN — EN END =
IN &5 OUTI #BufferPos "Source” Client SRC_VARIABLE Ret_val eErmar
#BufferPos POS DEST_ARRAY "Bufier” Field

The "MOVE" instruction moves the value "0" to the "#BufferPos" parameter. The "Serialize
instruction serializes the customer data from the "Source" data block and writes it in
sequential representation to the "Buffer" data block. The instruction stores the number of
bytes used by the sequential representation in the "#BufferPos" parameter.

Network 2:

5_MOVE Serialize

EN EN END =i
IM ou #labe #label SRC_VARIABLE Ret_Val #Errar
#BufferPos POS DEST_ARRAY “Buffer® Field

The logic now inserts some separator text to make it easier to deserialize the sequential
representation later. The "S_MOVE" instruction moves the text string "arti" to the "#Label"
parameter. The "Serialize" instruction writes these characters after the source client data to
the "Buffer" data block. The instruction adds the number of bytes in the text string "arti" to the
number already stored in the "#BufferPos" parameter.

Network 3:

Serialize

END
"Source” Rer_Val gErrar
Article[# Deliverfo DEST_ARRAY — "Buffer” Field
5] — SRC_VARIABLE
& BufferPos POS

The "Serialize" instruction serializes the data of a specific article, which is calculated in
runtime, from the "Source" data block and writes it in sequential representation to the
"Buffer" data block after the "arti" characters

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 273

Basic instructions

8.6 Move operations

274

Block Interface:

Marme

-
[]
[
4
4
-
a

gapeeepes

Input
DeliverPos

Output

InQut

Static

Temp
BufferPos
Error
Label

Data type

Int

Dint
Int
string[4]

Custom PLC data types:

The structure of the two PLC data types (UDTs) for this example are as follows:

Article

1 i
2 |
3 |3

Data

Marme

Mumber

Declaration

Colli

blocks:

Data type
Dint
String

Int

The two data blocks for this example are as follows:

Source

1 <
2 = ¢ Client
3 ™ b Aricle

MName
w Static

Data type

"Client”

Array[0..10] of "Article”

1

2 4l = p Field

Client
Name Data type
<0 Title Int
<0 Firstname string[10]
| Surname string[10]
Buffer
Mame Data type
<l - Static

Array[0..294] of Byte

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6.4

8.6 Move operations

FILL_BLK (Fill block) and UFILL_BLK (Fill block uninterruptible)

Table 8- 80 FILL_BLK and UFILL_BLK instructions

LAD / FBD SCL Description
CRCE TR FILL BLK(Interruptible fill instruction: Fills an address range with copies of a
[FILL_BLE | L . . i
—EN END - in:= variant_in, specified data element
lIN ouT | count:=int,
{ COLNT out=> variant_out);
IR0 UFILL_BLK (Uninterruptible fill instruction: Fills an address range with copies of
| UALL BLE | - . . e
_en ENO L in:= variant in, a specified data element
{IM ouT count:=int,
{COUNT out=>_variant out);
Table 8- 81 Data types for parameters
Parameter Data type Description
IN Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, | Data source address
DWord, Time, Date, TOD, Char, WChar
COUNT UDint, USInt, UlInt Number of data elements to copy
ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, | Data destination address

DWord, Time, Date, TOD, Char, WChar

Note
Rules for data fill operations

To fill with the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
To fill with a single elementary data type, use MOVE

To fill an array with an elementary data type, use FILL_BLK or UFILL_BLK

To fill a single character in a string, use MOVE

The FILL_BLK and UFILL_BLK instructions cannot be used to fill arrays in the |, Q, or M
memory areas.

The FILL_BLK and UFILL_BLK instructions copy the source data element IN to the
destination where the initial address is specified by the parameter OUT. The copy process
repeats and a block of adjacent addresses is filled until the number of copies is equal to the
COUNT parameter.

FILL_BLK and UFILL_BLK instructions differ in how interrupts are handled:

Interrupt events are queued and processed during FILL_BLK execution. Use the
FILL_BLK instruction when the data at the move destination address is not used within an
interrupt OB subprogram or, if used, the destination data does not have to be consistent.

Interrupt events are queued but not processed until UFILL_BLK execution is complete.
Use the UFILL_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

275

Basic instructions

8.6 Move operations

8.6.5

Table 8- 83 SWAP instruction

Table 8- 82 ENO status
ENO Condition Result
1 No error The IN element was successfully copied to
all COUNT destinations.
0 The destination (OUT) range exceeds Elements that fit are copied. No partial ele-
the available memory area ments are copied.
SWAP (Swap bytes)

LAD / FBD SCL Description
TR out := SWAP(in); |Reverses the byte order for two-byte and four-byte data elements. No change
| is made to the bit order within each byte. ENO is always TRUE following exe-
—EN END ~ cution of the SWAP instruction.
{IN ouT |

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 84 Data types for the parameters

Parameter Data type Description
IN Word, DWord Ordered data bytes IN
ouT Word, DWord Reverse ordered data bytes OUT
Example 1 Parameter IN = MBO Parameter OUT = MB4,
(before execution) (after execution)
Address MWO MB1 MW4 MB5
W#16#1234 12 34 34 12
WORD MSB LSB MSB LSB
Example 2 ~ Parameter IN = MB0 Parameter OUT = MB4,
(before execution) (after execution)
Address MDO MB1 MB2 MB3 MD4 MB5 MB6 MB7
DW#16# 12 34 56 78 78 56 34 12
12345678
DWORD MSB LSB MSB LSB
S7-1200 Programmable controller
276

System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6.6

Table 8-85 LOWER_BOUND instruction

LOWER_BOUND: (Read out ARRAY low limit)

8.6 Move operations

LAD / FBD

SCL

Description

out := LOWER_BOUND (

You can declare tags with ARRAY[*] in the block

LOWER_BOUND . . .
{en Enok ARR:= variant_in_, interface. For these local tags, you can read out
DIM:= udint in); the limits of the ARRAY. You will need to specify

ARR ouT — — = .))

oIl the required dimension at the DIM parameter.
The LOWER_BOUND (Read out ARRAY low
limit). instruction lets you read out the variable
low limit of the ARRAY.

Parameters

The following table shows the parameters of the instruction "LOWER_BOUND: Read out
ARRAY low limit":

Parameters | Declaration | Data type Memory area Description

EN Input BOOL ,Q,M,D, L Enable input

ENO Output BOOL ,Q,M,D, L Enable output ENO has the
signal state "0" if one of the
following conditions applies:

e The EN enable input has
the signal state "0".

e The dimension specified
at input DIM does not ex-
ist.

ARR Input ARRAY [¥] FB: Section InOut | ARRAY of which the variable
FC: Sections Input | low limit is to be read.
and InOut
DIM Input UDINT ,Q, M,D,Lor Dimension of the ARRAY of
constant which the variable low limit is
to be read.
ouT Output DINT ,Q, M, D, L Result

You can find additional information on valid data types under "Data types|(Page 125)":

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

277

Basic instructions
8.6 Move operations

Example
In the function (FC) block interface, the input parameter ARRAY_A is a one-dimensional
array with variable dimensions.

Block_1
MName Data type Default value

I < = Input
2 0w F ARRAY_A Array[*] of Int
3 L] <Add news
4 4l ™ Output
5 = Rezult Dint

<] M

T = T

—HF i =0 - T
* Block title:

Comment
hd Network 1:

| "Enable_start” LOWER_BOUND "Enable_CQut”

{iil EN ENO {5}

11
& ARRAY_A ARR our #Result
DIM

If the "Enable_Start" operand returns signal state "1", the CPU executes the
LOWER_BOUND instruction. It reads out the variable low limit of the ARRAY #ARRAY_A
from the one-dimensional array. If the instruction executes without errors, it sets operand
"Enable_Out" and sets the "Result" operand to the low limit of the array.

S7-1200 Programmable controller

278 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6.7

Table 8- 86 LOWER_BOUND instruction

UPPER_BOUND: (Read out ARRAY high limit)

8.6 Move operations

LAD / FBD SCL Description
out := UPPER_BOUND (You can declare tags with ARRAY[*] in the block
UPPER_BOUND . . .

i | ARR:= variant_in_, interface. For these local tags, you can read out
s ENO DIM:= udint _in); the limits of the ARRAY. You will need to specify
ARR our the required dimension at the DIM parameter.
DIM

The UPPER_BOUND (Read out ARRAY high
limit) instruction lets you read out the variable
high limit of the ARRAY.

Parameters

The following table shows the parameters of the instruction "UPPER_BOUND: Read out
ARRAY high limit":

Parameters | Declaration | Data type Memory area Description

EN Input BOOL ,Q,M,D, L Enable input

ENO Output BOOL ,Q,M,D, L Enable output

ARR Input ARRAY [] FB: Section InOut | ARRAY of which the variable
FC: Sections Input | high limit is to be read.
and InOut

DIM Input UDINT ,Q, M,D,Lor Dimension of the ARRAY of
constant which the variable high limit

is to be read.
ouT Output DINT ,Q,M,D, L Result

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

You can find additional information on valid data types under "Data types|(Page 125)":

279

Basic instructions

8.6 Move operations

Example

280

In the function (FC) block interface, the input parameter ARRAY_A is a one-dimensional
array with variable dimensions.

Block_1

Mame

> Input

= p ARRAY_A

g a

& &

¥ Qutput
L Rezult

Data type

Array[*] of Int

Dint

Default value

Ea

HF HiF =

* Block title:

rmrment

"Enable_Start”

ARRAY_A

EN
ARR
DInM

UPPER_BOUND

ENO
out

"Enable_Out”

#Result

If the "Enable_Start" operand returns signal state "1", the CPU executes the instruction. It
reads out the variable high limit of the ARRAY #ARRAY_A from the one-dimensional array. If
the instruction executes without errors, it sets operand "Enable_Out" and sets the "Result"

operand.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6.8 Read / Write memory instructions

8.6.8.1 PEEK and POKE (SCL only)

8.6 Move operations

SCL provides PEEK and POKE instructions that allow you to read from or write to data
blocks, 1/0, or memory. You provide parameters for specific byte offsets or bit offsets for the

operation.

Note

To use the PEEK and POKE instructions with data blocks, you must use standard (not
optimized) data blocks. Also note that the PEEK and POKE instructions merely transfer data.
They have no knowledge of data types at the addresses.

PEEK (area:=_in_,

dbNumber:= in_,
byteOffset:=_in_);

PEEK WORD (area:=_in _,

dbNumber :

byteOffset:=

PEEK DWORD (area:=_in_,

dbNumber:= in_,
byteOffset:=_in_);

PEEK _BOOL (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
bitOffset:=_in_);

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

in_,
in_);

Reads the byte referenced by byteOffset of
the referenced data block, I/O or memory
area.

Example referencing data block:

$MB100 := PEEK (area:=16#84,
dbNumber:=1, byteOffset:=#i)

Example referencing IB3 input:

$MB100 := PEEK (area:=16#81,
dbNumber:=0, byteOffset:=#i); // when
#i = 3

Reads the word referenced by byteOffset of
the referenced data block, 1/0 or memory
area.

Example:

$MW200 := PEEK_WORD (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Reads the double word referenced by
byteOffset of the referenced data block, 1/0 or
memory area.

Example:

$MD300 := PEEK_DWORD (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Reads a Boolean referenced by the bitOffset
and byteOffset of the referenced data block,
I/O or memory area

Example:

$MB100.0 := PEEK BOOL (area:=16#84,
dbNumber:=1, byteOffset:=#ii,
bitOffset:=#j) ;

281

Basic instructions

8.6 Move operations

282

POKE (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
value:=_in);

POKE_BOOL (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
bitOffset:=_in_,
value:=_in_);

POKE BLK (area_src:=_in_,

dbNumber_ src:= in_,
byteOffset_src:= in_,
area dest:=_in ,
dbNumber dest:=_in ,
byteOffset _dest:=_in_,
count:= in);

Writes the value (Byte, Word, or DWord) to
the referenced byteOffset of the referenced
data block, I/O or memory area

Example referencing data block:

POKE (area:=16#84, dbNumber:=2,
byteOffset:=3, value:="Tag 1");
Example referencing QB3 output:

POKE (area:=16#82, dbNumber:=0,
byteOffset:=3, value:="Tag 1");
Writes the Boolean value to the referenced
bitOffset and byteOffset of the referenced
data block, I/O or memory area

Example:

POKE_BOOL (area:=16#84, dbNumber:=2,
byteOffset:=3, bitOffset:=5, val-
ue:=0) ;

Writes "count" number of bytes starting at the
referenced byte Offset of the referenced
source data block, I/O or memory area to the
referenced byteOffset of the referenced desti-
nation data block, I/O or memory area

Example:

POKE_BLK (area_src:=16#84,

dbNumber src:=#src_db, byteOff-
set_src:=f#src_byte, area dest:=16#84,
dbNumber dest:=#src_db, byteOff-

set dest:=#src byte, count:=10);

For PEEK and POKE instructions, the following values for the "area", "area_src" and
"area_dest" parameters are applicable. For areas other than data blocks, the dbNumber
parameter must be 0.

16#81 |
16#82 Q
16#83 M
16#84 DB

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.6.8.2

8.6 Move operations

Read and write big and little Endian instructions (SCL)

The S7-1200 CPU provides SCL instructions for reading and writing data in little endian
format and in big endian format. Little endian format means that the byte with the least
significant bit is in the lowest memory address. Big endian format means that the byte with
the most significant bit is in the lowest memory address.

The four SCL instructions for reading and writing data in little endian and big endian format
are as follows:

e READ_LITTLE (Read data in little endian format)
e WRITE_LITTLE (Write data in little endian format)
e READ_BIG (Read data in big endian format)
e WRITE_BIG (Write data in big endian format)

Table 8- 87 Read and write big and little endian instructions

LAD / FBD SCL Description
Not available |READ_LITTLE (Reads data from a memory area and writes it to a
src_array:= variant in_, single tag in little endian byte format.

dest Variable => out_,
pos:= dint inout)

Not available

WRITE_LITTLE (Writes data from a single tag to a memory area in little
src_variable:= in_, endian byte format.
dest_array => variant_ inout_,
pos:= dint inout)

Not available

READ BIG(Reads data from a memory area and writes it to a
src_array:= variant_in_, single tag in big endian byte format.
dest Variable => out_,
pos:= dint inout)

Not available

WRITE BIG(Writes data from a single tag to a memory area in big
src_variable:= in_, endian byte format.
dest_array => variant_ inout_,

pos:= dint inout)

Table 8- 88 Parameters for the READ_LITTLE and READ_BIG instructions

Parameter Data type Description
src_array Array of Byte Memory area from which to read
data
dest_Variable Bit strings, integers, floating-point numbers, timers, date and Destination variable at which to
time, character strings write data
pos DINT Zero-based position from which to

start reading data from the
src_array input.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 283

Basic instructions

8.6 Move operations

Table 8- 89 Parameters for the WRITE_LITTLE and WRITE_BIG instructions

Parameter Data type Description
src_variable Bit strings, integers, floating-point numbers, LDT, TOD, LTOD, | Source data from tag
DATA, Char, WChar
dest_array Array of Byte Memory area at which to write data
pos DINT Zero-based position at which to

start writing data into the dest_array
output.

Table 8- 90 RET_VAL parameter

RET_VAL’ Description

(W#16#...)

0000 No error

80B4 The SRC_ARRAY or DEST_ARRAY is not an Array of Byte

8382 The value at parameter POS is outside the limits of the array.

8383 The value at parameter POS is within the limits of the Array but the size of the memory area exceeds the
high limit of the array.

"You can view the error codes as either integer or hexadecimal in the program editor.

284

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.6 Move operations

8.6.9 Variant instructions

8.6.9.1 VariantGet (Read VARIANT tag value)

You can use the "Read out Variant tag value" instruction to read the value of the tag to which
the Variant pointer at the SRC parameter points and write it in the tag at the DST parameter.

The SRC parameter has the Variant data type. Any data type except for Variant can be
specified at the DST parameter.

The data type of the tag at the DST parameter must match the data type to which the Variant
points.

Table 8- 91 VariantGet instruction

LAD / FBD SCL Description
e Reads the tag pointed to by the SRC parameter and writes it to
SEN END = VariantGet (the tag at the DST parameter
=RC D=T SRC:= variant_in_,

DST=> variant_out);

Note

To copy structures and arrays, you can use the "MOVE_BLK_VARIANT: Move block"
instruction.

Table 8- 92 Parameters for the VariantGet instruction

Parameter Data type Description

SRC Variant Pointer to source data

DST Bit strings, integers, floating-point numbers, timers, date and Destination at which to write data
time, character strings, ARRAY elements, PLC data types

Table 8- 93 ENO status

ENO Condition Result
1 No error Instruction copied the tag data pointed to by
SRC to the DST tag.
0 Enable input EN has the signal state "0" or the data types | Instruction copied no data.
do not correspond.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 285

Basic instructions

8.6 Move operations

8.6.9.2 VariantPut (Write VARIANT tag value)

You can use the "Write VARIANT tag value" instruction to write the value of the tag at the
SRC parameter to the tag at the DST parameter to which the VARIANT points.

The DST parameter has the VARIANT data type. Any data type except for VARIANT can be
specified at the SRC parameter.

The data type of the tag at the SRC parameter must match the data type to which the
VARIANT points.

Table 8- 94 VariantPut instruction

LAD / FBD SCL Description
S Writes the tag referenced by the SRC parameter to the variant
-EN ENO - VariantPut (pointed to by the DST parameter
SRC SRC:= variant in_,
B DST=> variant_in_);

Note

To copy structures and ARRAYSs, you can use the "MOVE_BLK_VARIANT: Move block"
instruction.

Table 8- 95 Parameters for the VariantPut instruction

Parameter Data type Description

SRC Bit strings, integers, floating-point numbers, timers, date and Pointer to source data
time, character strings, ARRAY elements, PLC data types

DST Variant Destination at which to write data

Table 8- 96 ENO status

ENO Condition Result
1 No error Instruction copied the SRC tag data to the DST
tag.
0 Enable input EN has the signal state "0" or the data types | Instruction copied no data.
do not correspond.

S7-1200 Programmable controller
286 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.6 Move operations

8.6.9.3 CountOfElements (Get number of ARRAY elements)

You can use the "Get number of ARRAY elements" instruction to query how many Array
elements are in a tag pointed to by a Variant.

If it is a one-dimensional ARRAY, the instruction returns the difference between the high and
low limit +1 is output. If it is a multi-dimensional ARRAY, the instruction returns the product of
all dimensions.

Table 8- 97 CountOfElements instruction

LAD / FBD SCL Description
CountofElements Counts the r)umber of array elements at
-EN ENO - Result := CountOfElements (the array pointed to by the IN parameter.
N RET_WAL _variant_in);
Note

If the Variant points to an Array of Bool, the instruction counts the fill elements to the nearest
byte boundary. For example, the instruction returns 8 as the count for an Array[0..1] of Bool.

Table 8- 98 Parameters for the CountOfElements instruction

Parameter Data type Description

IN Variant Tag with array elements to be
counted

RET_VAL UDint Instruction result

Table 8- 99 ENO status

ENO Condition Result
1 No error Instruction returns the number of array ele-
ments.
0 Enable input EN has the signal state "0" or the Variant Instruction returns 0.
does not point to an array.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 287

Basic instructions
8.6 Move operations

8.6.10 Legacy instructions
8.6.10.1 FieldRead (Read field) and FieldWrite (Write field) instructions
Note

STEP 7 V10.5 did not support a variable reference as an array index or multi-dimensional
arrays. The FieldRead and FieldWrite instructions were used to provide variable array index
operations for a one-dimensional array. STEP 7 V11 and greater do support a variable as an
array index and multi-dimensional arrays. FieldRead and FieldWrite are included in STEP 7
V11 and greater for backward compatibility with programs that have used these instructions.

Table 8- 100 FieldRead and FieldWrite instructions

LAD / FBD SCL Description
: value := mem- FieldRead reads the array element with the index
Fﬂffad ber[index]; value INDEX from the array whose first element in
EN o END = specified by the MEMBER parameter. The value of
INDEx WALILIE the array element is transferred to the location speci-
MEMBER fied at the VALUE parameter.
- member [index] := val- WriteField transfers the value at the location specified
F'E';';';"“ ue; by the VALUE parameter to the array whose first
EN - ENO element is specified by the MEMBER parameter. The
INDE MEMEER value is transferred to the array element whose array
WALLE index is specified by the INDEX parameter.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 101 Data types for parameters

Parameter and type Data type Description
Index Input Dint The index number of the array element to be read or
written to
Member 1 Input Binary numbers, integers, float- | Location of the first element in a one- dimension
ing-point numbers, timers, array defined in a global data block or block inter-
DATE, TOD, CHAR and face.
WCHAR as components of an | For example: If the array index is specified as [-2..4],
ARRAY tag then the index of the first element is -2 and not 0.
Value ! Out Binary numbers, integers, float- | Location to which the specified array element is
ing-point numbers, timers, copied (FieldRead)
DATE, TOD, CHAR, WCHAR Location of the value that is copied to the specified
array element (FieldWrite)

1 The data type of the array element specified by the MEMBER parameter and the VALUE parameter must have the
same data type.

S7-1200 Programmable controller
288 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.6 Move operations

The enable output ENO = 0, if one of the following conditions applies:
e The EN input has signal state "0"

e The array element specified at the INDEX parameter is not defined in the array
referenced at MEMBER parameter

® FErrors such as an overflow occur during processing

Example: Accessing data by array indexing

To access elements of an array with a variable, simply use the variable as an array index in
your program logic. For example, the network below sets an output based on the Boolean
value of an array of Booleans in "Data_block_1" referenced by the PLC tag "Index".

"Data_block_1"
Bool_ W00
Array["Index"] "Tag_1"

]l | I 1}
LI} L |

The logic with the variable array index is equivalent to the former method using the
FieldRead instruction:

FieldRead
Bool
EM ERMC
HbADT100 %®Q0.0
"Index" — INDEX WALUE — "Tag_1"
"Data_block_1"
Bool_aArray(1] — MEMEER

FieldWrite and FieldRead instructions can be replaced with variable array indexing logic.

SCL has no FieldRead or FieldWrite instructions, but supports indirect addressing of an
array with a variable:
#Tag_1 := "Data_block 1".Bool Array[#Index];

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 289

Basic instructions

8.7 Conversion operations

8.7

8.7.1

Conversion operations

CONV (Convert value)

Table 8- 102 Convert (CONV) instruction

LAD / FBD SCL Description
: out := <data type in>_TO_<data type out>(in); Converts a data element from one
CONY dat
[P | ata type to another data type.
—EH END
(N our

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

2 For SCL: Construct the conversion instruction by identifying the data type for the input parameter (in) and output pa-
rameter (out). For example, DWORD_TO_REAL converts a DWord value to a Real value.

Table 8- 103 Data types for the parameters

Parameter Data type Description
IN Bit string”, Sint, USInt, Int, UInt, DInt, UDInt, Real, LReal, Input value
BCD16, BCD32, Char, WChar
ouT Bit string”, Sint, USInt, Int, UInt, DInt, UDInt, Real, LReal, Input value converted to a new data type

BCD16, BCD32, Char, WChar

1 The instruction does not allow you to select Bit strings (Byte, Word, DWord). To enter an operand of data type Byte,
Word, or DWord for a parameter of the instruction, select an unsigned integer with the same bit length. For example, se-

lect USInt for a Byte, Ulnt for a Word, or UDInt for a DWord.

After you select the (convert from) data type, a list of possible conversions is shown in the
(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data
type. Conversions from and to BCD32 are restricted to the Dint data type.

Table 8- 104 ENO status

ENO Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
0 Result exceeds valid range for OUT data type OUT is set to the IN value
S7-1200 Programmable controller
290 System Manual, V4.2, 09/2016, A5E02486680-AK

Basic instructions

8.7 Conversion operations

8.7.2 Conversion instructions for SCL

Conversion instructions for SCL

Table 8- 105 Conversion from a Bool, Byte, Word, or DWord

Data type Instruction Result
Bool BOOL_TO_BYTE, BOOL_TO_WORD, The value is transferred to the least significant bit of the
BOOL_TO_DWORD, BOOL TO_INT, target data type.
BOOL _TO DINT
Byte BYTE TO_BOOL The least significant bit is transferred into the destination
data type.
BYTE_TO_WORD, BYTE_TO_DWORD The value is transferred to the least significant byte of the
target data type.
BYTE_TO_SINT, BYTE_TO_USINT The value is transferred to the target data type.
BYTE_TO_INT, BYTE TO_UINT, The value is transferred to the least significant byte of the
BYTE_TO_DINT, BYTE TO_ UDINT target data type.
Word WORD_TO_BOOL The least significant bit is transferred into the destination
data type.
WORD_TO_BYTE The least significant byte of the source value is trans-
ferred to the target data type
WORD_TO_DWORD The value is transferred to the least significant word of
the target data type.
WORD_TO_SINT, WORD_TO_USINT The least significant byte of the source value is trans-
ferred to the target data type.
WORD_TO_INT, WORD_TO_UINT The value is transferred to the target data type.
WORD_TO_DINT, WORD_TO_UDINT The value is transferred to the least significant word of
the target data type.
DWord DWORD_TO_BOOL The least significant bit is transferred into the destination
data type.
DWORD_TO_BYTE, DWORD_TO_WORD, The least significant byte of the source value is trans-
DWORD_TO_SINT ferred to the target data type.
DWORD_TO_USINT, DWORD_TO_INT, The least significant word of the source value is trans-
DWORD_TO_UINT ferred to the target data type.
DWORD_TO_DINT, DWORD_TO_UDINT, The value is transferred to the target data type.

DWORD TO REAL

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 291

Basic instructions

8.7 Conversion operations

Table 8- 106 Conversion from a short integer (Sint or USInt)

Data type Instruction Result
Sint SINT_TO_BOOL The least significant bit is transferred into the destination
data type.
SINT_TO_BYTE The value is transferred to the target data type
SINT_TO_WORD, SINT_ TO_DWORD The value is transferred to the least significant byte of the
target data type.
SINT_TO_INT, SINT TO_DINT, The value is converted.
SINT_TO_USINT, SINT TO_UINT,
SINT_TO_UDINT, SINT TO_ REAL,
SINT_TO_LREAL, SINT TO CHAR,
SINT TO STRING
USint USINT_ TO_BOOL The least significant bit is transferred into the destination

data type.

USINT_TO_ BYTE

The value is transferred to the target data type

USINT_TO_WORD, USINT_TO_DWORD,
USINT_TO_INT, USINT_TO UINT,
USINT TO DINT, USINT TO UDINT

The value is transferred to the least significant byte of the
target data type.

USINT_TO_SINT, USINT_TO_ REAL,
USINT_TO_LREAL, USINT_TO_ CHAR,
USINT _TO_STRING

The value is converted.

Table 8- 107 Conversion from an integer (Int or Ulnt)

Data type instruction Result
Int INT TO_BOOL The least significant bit is transferred into the destination
data type.
INT _TO_BYTE, INT_TO_DWORD, The value is converted.
INT TO_SINT, INT TO_ USINT,
INT TO_UINT, INT_ TO_ UDINT,
INT_TO_REAL, INT TO_ LREAL,
INT TO CHAR, INT TO STRING
INT TO_WORD The value is transferred to the target data type.
INT_TO_DINT The value is transferred to the least significant byte of the
target data type.
Ulint UINT_TO_BOOL The least significant bit is transferred into the destination
data type.
UINT TO_BYTE, UINT TO_SINT, The value is converted.
UINT_TO USINT, UINT TO_INT,
UINT_TO REAL, UINT TO_ LREAL,
UINT TO CHAR, UINT TO STRING
UINT_TO_WORD, UINT_TO_DATE The value is transferred to the target data type.
UINT TO_DWORD, UINT_ TO_DINT, The value is transferred to the least significant byte of the
UINT TO UDINT target data type.
S7-1200 Programmable controller
292 System Manual, V4.2, 09/2016, A5E02486680-AK

Basic instructions

Table 8- 108 Conversion from a double integer (Dint or UDInt)

8.7 Conversion operations

Data type Instruction Result
Dint DINT TO_BOOL The least significant bit is transferred
into the destination data type.
DINT TO_BYTE, DINT_TO WORD, DINT TO_SINT, The value is converted.
DINT TO_USINT, DINT TO_INT, DINT TO_UINT,
DINT TO_UDINT, DINT_ TO_REAL, DINT TO_LREAL,
DINT TO CHAR, DINT TO STRING
DINT_TO_DWORD, DINT_TO_TIME The value is transferred to the target
data type.
UDInt UDINT TO_BOOL The least significant bit is transferred

into the destination data type.

UDINT_TO_BYTE, UDINT TO WORD, UDINT TO_SINT,
UDINT_TO_USINT, UDINT TO_INT, UDINT TO_UINT,
UDINT_TO_DINT, UDINT TO REAL, UDINT TO_LREAL,
UDINT TO CHAR, UDINT TO_ STRING

The value is converted.

UDINT_TO_DWORD, UDINT_TO_TOD

The value is transferred to the target
data type.

Table 8- 109 Conversion from a Real number (Real or LReal)

LREAL_TO_UINT, LREAL TO DINT, LREAL TO_UDINT,
LREAL TO REAL, LREAL TO_ STRING

Data type Instruction Result
Real REAL TO_DWORD, REAL_TO_LREAL The value is transferred to the target
data type.
REAL_TO_SINT, REAL TO_USINT, REAL TO_INT, The value is converted.
REAL_TO_UINT, REAL TO_DINT, REAL TO_UDINT,
REAL TO STRING
LReal LREAL TO_SINT, LREAL TO_USINT, LREAL_TO_INT, The value is converted.

Table 8- 110 Conversion from Time, DTL, TOD or Date

Data type Instruction Result

Time TIME TO_DINT The value is transferred to the target data type.
DTL DTL_TO _DATE, DTL_TO_TOD The value is converted.

TOD TOD_TO_UDINT The value is converted.

Date DATE_TO_UINT The value is converted.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

293

Basic instructions

8.7 Conversion operations

Table 8- 111 Conversion from a Char or String

Data type Instruction Result
Char CHAR TO_SINT, CHAR TO_USINT, The value is converted.
CHAR TO_INT, CHAR TO UINT,
CHAR TO DINT, CHAR TO UDINT
CHAR TO_STRING The value is transferred to the first character of
the string.
String STRING_TO_SINT, STRING_TO_ USINT, The value is converted.
STRING_TO_INT, STRING TO_ UINT,
STRING_TO_DINT, STRING_TO UDINT,
STRING TO REAL, STRING TO LREAL
STRING_TO_CHAR The first character of the string is copied to the
Char.
8.7.3 ROUND (Round numerical value) and TRUNC (Truncate numerical value)

Table 8- 112 ROUND and TRUNC instructions

LAD / FBD SCL Description
out := ROUND (in); [Converts a real number to an integer. For LAD/FBD, you click the "???" in
:‘-t:?z!;:?ﬁ the instruction box to select the data type for the output, for example "DInt".
—EN END = For SCL, the default data type for the output of the ROUND instruction is
L ouT | DINT. To round to another output data type, enter the instruction name with
the explicit name of the data type, for example, ROUND_REAL or
ROUND_LREAL.
The real number fraction is rounded to the nearest integer value (IEEE -
round to nearest). If the number is exactly one-half the span between two
integers (for example, 10.5), then the number is rounded to the even inte-
ger. For example:
e ROUND (10.5) =10
e ROUND (11.5) =12
= out := TRUNC(in); TRUNC converts a real number to an integer. The fractional part of the real
TRUNC :
Real to Dint | number is truncated to zero (IEEE - round to zero).
—{EM END —

m out|

1 For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

Table 8- 113 Data types for the parameters

Parameter Data type Description
IN Real, LReal Floating point input
ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Rounded or truncated output
S7-1200 Programmable controller
294 System Manual, V4.2, 09/2016, A5E02486680-AK

Basic instructions
8.7 Conversion operations

Table 8- 114 ENO status

ENO Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
8.7.4 CEIL and FLOOR (Generate next higher and lower integer from floating-point
number)

Table 8- 115 CEIL and FLOOR instructions

LAD / FBD SCL Description
i out := CEIL(in); Converts a real number (Real or LReal) to the closest integer
Fleal 1o Dind grea_1te_r t_han or equal to the selected real number (IEEE "round
-{EN END — to +infinity").
{IN ouT |
T FOOR out := FLOOR(in); Converts a real number (Real or LReal) to the closest integer
Riaad bo Dt smaller than or equal to the selected real number (IEEE "round
—EN END - to -infinity").
iN__ out}

T For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

Table 8- 116 Data types for the parameters

Parameter Data type Description
IN Real, LReal Floating point input
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Converted output

Table 8- 117 ENO status

ENO Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 295

Basic instructions

8.7 Conversion operations

8.7.5 SCALE_X (Scale) and NORM_X (Normalize)

Table 8- 118 SCALE_X and NORM_X instructions

LAD / FBD SCL Description
ST out :=SCALE_X(min:= in , Scales the normalized real parameter VALUE
Rl 1o 777 value:=_in_, where (0.0 <= VALUE <= 1.0) in the data type
= EN ENO - max:= in); and value range specified by the MIN and MAX
{MIN OUT parameters:
{VALLE
e OUT = VALUE (MAX - MIN) + MIN
TR out :=NORM X(min:= in , Normalizes the parameter VALUE inside the
77 to Real | value:= in , value range specified by the MIN and MAX pa-
= EM END = max:=_in_); rameters:
:E;:L!E Lt OUT = (VALUE - MIN) / (MAX - MIN),
[b where (0.0 <=0UT <=1.0)

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 119 Data types for the parameters

Parameter Data type’ Description

MIN Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal Input minimum value for range

VALUE SCALE_X: Real, LReal Input value to scale or normalize
NORM_X: Sint, Int, DiInt, USInt, Uint, UDInt, Real, LReal

MAX Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal Input maximum value for range

ouT SCALE_X: Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Scaled or normalized output value
NORM_X: Real, LReal

1 For SCALE_X: Parameters MIN, MAX, and OUT must be the same data type.
For NORM_X: Parameters MIN, VALUE, and MAX must be the same data type.

296

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.7 Conversion operations

Note

SCALE_X parameter VALUE should be restricted to (0.0 <= VALUE <=1.0)

If parameter VALUE is less than 0.0 or greater than 1.0:

e The linear scaling operation can produce OUT values that are less than the parameter
MIN value or above the parameter MAX value for OUT values that fit within the value
range of the OUT data type. SCALE_X execution sets ENO = TRUE for these cases.

e ltis possible to generate scaled numbers that are not within the range of the OUT data
type. For these cases, the parameter OUT value is set to an intermediate value equal to
the least-significant portion of the scaled real number prior to final conversion to the OUT
data type. SCALE_X execution sets ENO = FALSE in this case.

NORM_X parameter VALUE should be restricted to (MIN <= VALUE <= MAX)
If parameter VALUE is less than MIN or greater than MAX, the linear scaling operation can

produce normalized OUT values that are less than 0.0 or greater than 1.0. NORM_X
execution sets ENO = TRUE in this case.

Table 8- 120 ENO status

ENO Condition Result OUT

1 No error Valid result

0 Result exceeds valid range for the OUT data Intermediate result: The least-significant portion of a real

type number prior to final conversion to the OUT data type.

0 Parameters MAX <= MIN SCALE_X: The least-significant portion of the Real number
VALUE to fill up the OUT size.
NORM_X: VALUE in VALUE data type extended to fill a
double word size.

0 Parameter VALUE = +/- INF or +/- NaN VALUE is written to OUT

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

297

Basic instructions

8.7 Conversion operations

Example (LAD): normalizing and scaling an analog input value

An analog input from an analog signal module or signal board using input in current is in the
range 0 to 27648 for valid values. Suppose an analog input represents a temperature where
the 0 value of the analog input represents -30.0 degrees C and 27648 represents 70.0

degrees C.

To transform the analog value to the corresponding engineering units, normalize the input to
a value between 0.0 and 1.0, and then scale it between -30.0 and 70.0. The resulting value
is the temperature represented by the analog input in degrees C:

MORK_ SCALE X
Int to Real Real toReal
EM EMO EN ENO —y
MM
! HMOED -3 HMOB0)
HIE2 “Mormalized_ 0000000000000 OUT = "Current_temp
“Temp_input’ - ¥ALUE OUT - valug” OE+007 — M
MAX
27645 -
"Marmalized_
value" - WALLE
7.
0000000000000
OE+007 — MAX

Note that if the analog input was from an analog signal module or signal board using voltage,
the MIN value for the NORM_X instruction would be -27648 instead of 0.

Example (LAD): normalizing and scaling an analog output value

208

An analog output to be set in an analog signal module or signal board using output in current
must be in the range 0 to 27648 for valid values. Suppose an analog output represents a
temperature setting where the 0 value of the analog input represents -30.0 degrees C and
27648 represents 70.0 degrees C. To convert a temperature value in memory that is
between -30.0 and 70.0 to a value for the analog output in the range 0 to 27648, you must
normalize the value in engineering units to a value between 0.0 and 1.0, and then scale it to
the range of the analog output, 0 to 27648:

MORM_x SCALE_X
Real toReal Real to Int
EN EMO EM END —y
MM
-3, M0G0 ! HIWED)
0000000000000 "Mormalized_ wMOED auT - "Temp_output’
DE+007 = MIN ouT - value” “Mormalized
LRWED walue” — WALLE
“Target_temp” = YWALUE 2764 — MAX
7.
0000000000000
OE+007 — MAX

Note that if the analog output was for an analog signal module or signal board using voltage,
the MIN value for the SCALE_X instruction would be -27648 instead of 0.

Additional information on analog input representations (Page|1471) and|analog output
representations|(Page 1472) in both voltage and current can be found in the Technical
Specifications.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.7.6

8.7.6.1

Variant conversion instructions

8.7 Conversion operations

VARIANT_TO_DB_ANY (Convert VARIANT to DB_ANY)

You use the "VARIANT to DB_ANY" instruction to read the operand at the IN parameter and
convert it to the data type DB_ANY. The IN parameter is of the Variant data type and
represents either an instance data block or an ARRAY data block. When you create the
program, you do not need to know which data block corresponds to the IN parameter. The
instruction reads the data block number during runtime and writes it to the operand at the

RET_VAL parameter.

Table 8- 121 VARIANT_TO_DB_ANY instruction

err => _int out);

LAD / FBD SCL Description
Not available RET VAL := Reads the operand from the Variant IN parameter and stores it
VARIANT TO DB _ANY (in the function result, which is of the type DB_ANY
in := _variant_in_,

Table 8- 122 Parameters for the VARIANT_TO_DB_ANY instruction

Parameter Data type Description

IN Variant Variant that represents and instance data
block or an array data block

RET_VAL DB_ANY Output DB_ANY data type that contains the
converted data block number

ERR Int Error information

Table 8- 123 ENO status

ENO Condition Result
1 No error Instruction converts the input Variant and
stores it in the DB_ANY function output
0 Enable input EN has the signal state "0" or the IN param- | Instruction does nothing.
eter is invalid.

Table 8- 124 Error output codes for the VARIANT_TO_DB_ANY instruction

Err Description

(W#16#...)

0000 No error

252C The Variant data type at IN parameter has the value 0. The CPU
changes to STOP mode.

8131 The data block does not exist or is too short (first access).

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

299

Basic instructions

8.7 Conversion operations

Err Description

(W#16#...)

8132 The data block is too short and not an Array data block (second
access).

8134 The data block is write-protected

8150 The data type Variant at parameter IN provides the value "0". To
receive this error message, the "Handle errors within block" block
property must be activated. Otherwise the CPU changes to STOP
mode and sends the error code 16#252C

8154 The data block has the incorrect data type.

*You can display error codes in the program editor as integer or hexadecimal values.

8.7.6.2 DB_ANY_TO_VARIANT (Convert DB_ANY to VARIANT)

You use the "DB_ANY to VARIANT" instruction to read the number of a data block that
meets the requirements listed below. The operand at the IN parameter has the data type
DB_ANY, which means you do not need to know during program creation which data block is
to be read. The instruction reads the data block number during runtime and writes it to the
function result RET_VAL by means of a VARIANT pointer.

Table 8- 125 DB_ANY_TO_VARIANT instruction

LAD / FBD SCL

Description

Not available RET VAL :=

DB_ANY_TO_VARIANT (

in := _db_any in_,
err => _int_out);

Reads the data block number from the Variant IN parameter and
stores it in the function result, which is of the type Variant

Table 8- 126 Parameters for the DB_ANY_TO_VARIANT instruction

Parameter Data type Description

IN DB_ANY Variant that contains the data block number

RET_VAL Variant Output DB_ANY data type that contains the
converted data block number

ERR Int Error information

Table 8- 127 ENO status

ENO Condition Result
1 No error Instruction converts the data block number in
the variant and stores it in the function DB_ANY
output
0 Enable input EN has the signal state "0" or the IN Instruction does nothing.
parameter is invalid.

300

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.7 Conversion operations

Table 8- 128 Error output codes for the DB_ANY_TO_VARIANT instruction

Err Description

(W#16#...)

0000 No error

8130 The number of the data block is 0.

8131 The data block does not exist or is too short.

8132 The data block is too short and not an Array data block.
8134 The data block is write-protected.

8154 The data block has the incorrect data type.

8155 Unknown type code

*You can display error codes in the program editor as integer or hexadecimal values.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 301

Basic instructions

8.8 Program control operations

8.8

8.8.1

Program control operations

JMP (Jump if RLO = 1), JMPN (Jump if RLO = 0), and Label (Jump label)

instructions

Table 8- 129 JMP, JMPN, and LABEL instruction

LAD FBD SCL Description
Label_name Label_rame See the| GOTO|(Page 325) | Jump if RLO (result of logic operation) = 1:
—{IMP— TaMP | statement. If there is power flow to a JMP coil (LAD), or if the
=l JMP box input is true (FBD), then program execution
continues with the first instruction following the speci-
fied label.
Labsl_name: Label_rame Jump if RLO = 0:
—{JMPN JMPH If there is no power flow to a JMPN coil (LAD), or if
-1 e the JMPN box input is false (FBD), then program
execution continues with the first instruction following
the specified label.
Destination label for a JMP or JMPN jump instruction.
| Label_name | Label nams

1 You create your label names by typing in the LABEL instruction directly. Use the parameter helper icon to select the
available label names for the JMP and JMPN label name field. You can also type a label name directly into the JMP or

JMPN instruction.

Table 8- 130 Data types for the parameters

Parameter

Data type

Description

Label_name

Label identifier

Identifier for Jump instructions and the corresponding jump desti-
nation program label

302

e Each label must be unique within a code block.

® You can jump within a code block, but you cannot jump from one code block to another

code block.

® You can jump forward or backward.

® You can jump to the same label from more than one place in the same code block.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8 Program conftrol operations

8.8.2 JMP_LIST (Define jump list)

Table 8- 131 JMP_LIST instruction

LAD / FBD SCL

Description

CASE k OF
0: GOTO destO;
—EN DESTO 1: GOTO destl;
K. DEST1 2: GOTO dest2;
DESTZ [n: GOTO destn;]

#DEST3 |END cask;

JHP_LIST

The JMP_LIST instruction acts as a program jump distributor to control
the execution of program sections. Depending on the value of the K
input, a jump occurs to the corresponding program label. Program exe-
cution continues with the program instructions that follow the destination
jump label. If the value of the K input exceeds the number of labels - 1,
then no jump occurs and processing continues with the next program
network.

Table 8- 132 Data types for parameters

Parameter Data type

Description

K Ulnt

Jump distributor control value

DESTO, DESTH1, .., | Program Labels
DESTn.

Jump destination labels corresponding to specific K parameter values:

If the value of K equals 0, then a jump occurs to the program label as-
signed to the DESTO output. If the value of K equals 1, then a jump oc-
curs to the program label assigned to the DEST1 output, and so on. If the
value of the K input exceeds the (number of labels - 1), then no jump
occurs and processing continues with the next program network.

For LAD and FBD: When the JMP_LIST box is first placed in your program, there are two
jump label outputs. You can add or delete jump destinations.

Click the create icon inside the box (on the left of the last DEST parameter)

JHP_LIST X
“EN DESTO to add new outputs for jump labels.
K DESTI
by
JMP_LIST ¢ Right-click on an output stub and select the "Insert output” command.
=EN DESTO ¢ Right-click on an output stub and select the "Delete" command.

k. uDESTIm
i

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

303

Basic instructions

8.8 Program control operations

8.8.3 SWITCH (Jump distributor)

Table 8- 133 SWITCH instruction

LAD / FBD SCL

Description

Not available
SWITCH
e

EM DESTO
K DEST
== 3:DEST2
93 ELSE

The SWITCH instruction acts as a program jump distributor to
control the execution of program sections. Depending on the re-
sult of comparisons between the value of the K input and the
values assigned to the specified comparison inputs, a jump occurs
to the program label that corresponds to the first comparison test
that is true. If none of the comparisons is true, then a jump to the
»= label assigned to ELSE occurs. Program execution continues with
the program instructions that follow the destination jump label.

1 For LAD and FBD: Click below the box name and select a data type from the drop-down menu.

2 For SCL: Use an IF-THEN set of comparisons.

Table 8- 134 Data types for parameters

Parameter Data type!

Description

K Ulnt

Common comparison value input

==, <>, <, <=, >, >= | SInt, Int, DInt, USInt, Uint, UDInt, Real,
LReal, Byte, Word, DWord, Time,

TOD, Date

Separate comparison value inputs for specific comparison
types

DESTO, DESTT, ..,
DESTn, ELSE

Program Labels

Jump destination labels corresponding to specific compari-
sons:

The comparison input below and next to the K input is pro-
cessed first and causes a jump to the label assigned to
DESTO, if the comparison between the K value and this
input is true. The next comparison test uses the next input
below and causes a jump to the label assigned to DEST1, if
the comparison is true, The remaining comparisons are
processed similarly and if none of the comparisons are true,
then a jump to the label assigned to the ELSE output oc-
curs.

1 The K input and comparison inputs (==, <>, <, <=, >, >=) must be the same data type.

304

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.8 Program conftrol operations

Adding inputs, deleting inputs, and specifying comparison types
When the LAD or FBD SWITCH box is first placed in your program there are two comparison
inputs. You can assign comparison types and add inputs/jump destinations, as shown below.

—EM DESTO Click a comparison operator inside the box and select a new operator
K s:DEST1 from the drop-down list.

—EN _ DESTO Click the create icon inside the box (to the left of the last DEST pa-
kK DEST1 rameter) to add new comparison-destination parameters.

= %ELSE

-EN DESTO ¢ Right-click on an input stub and select the "Insert input" command.
s DESTI e Right-click on an input stub and select the "Delete" command.

K
%== ELSE

Table 8- 135 SWITCH box data type selection and allowed comparison operations

Data type Comparison Operator syntax
Byte, Word, DWord Equal ==
Not equal <>
Sint, Int, DiInt, USInt, Ulint, Equal ==
UDInt, Real, LReal, Time, TOD, Not equal <>
Date
Greater than or equal >=
Less than or equal <=
Greater than >
Less than <

SWITCH box placement rules
¢ No LAD/FBD instruction connection in front of the compare input is allowed.

e There is no ENO output, so only one SWITCH instruction is allowed in a network and the
SWITCH instruction must be the last operation in a network.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 305

Basic instructions

8.8 Program control operations

8.8.4

RET (Return)

The optional RET instruction is used to terminate the execution of the current block. If and
only if there is power flow to the RET coil (LAD) or if the RET box input is true (FBD), then
program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB, the "Return_Value" parameter
is ignored. If the current block is a FC or FB, the value of the "Return_Value" parameter is
passed back to the calling routine as the ENO value of the called box.

You are not required to use a RET instruction as the last instruction in a block; this is done
automatically for you. You can have multiple RET instructions within a single block.

For SCL, see the RETURN (Page 325) statement.

Table 8- 136 Return_Value (RET) execution control instruction

[RET |

LAD FBD SCL Description
"Plabur, Ve “Rehun Vake" RETURN; Terminates the execution of the current block
—RET

Table 8- 137 Data types for the parameters

Parameter

Data type Description

Return_Value

Bool The "Return_value" parameter of the RET instruction is assigned to the ENO output

of the block call box in the calling block.

306

Sample steps for using the RET instruction inside an FC code block:
1. Create a new project and add an FC:
2. Edit the FC:

— Add instructions from the instruction tree.

— Add a RET instruction, including one of the following for the "Return_Value"
parameter:

TRUE, FALSE, or a memory location that specifies the required return value.
— Add more instructions.
3. Call the FC from MAIN [OB1].

The EN input on the FC box in the MAIN code block must be true to begin execution of the
FC.

The value specified by the RET instruction in the FC will be present on the ENO output of the
FC box in the MAIN code block following execution of the FC for which power flow to the
RET instruction is true.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8 Program conftrol operations

8.8.5 ENDIS_PW (Enable/disable CPU passwords)

Table 8- 138 ENDIS_PW instruction

LAD / FBD SCL Description
T— ENDIS_ PW(The ENDIS_PW instruction can allow and
— - o req:= bool in , disallow client connections to a S7-1200
— REQ Ret_Val f pwd:= bool in , CPU, even when the client can provide the
— E_PWD E_PAD_ON— - - .
= FULL_FW\D FULL_FWND_OMN = full_PWd : =_b001_1n_’ COrreCt paSSWOI’d.
—R.PwO R_PWD_ON — r_pwd:= bool in_, This instruction does not disallow Web
— HIMI_PAD Hii_PWD_Ok — hmi_PW d: =_bool_in_, server passwords.

f pwd on=> bool_ out_,
full pwd on=> bool out_,
r_pwd_on=> bool out_,
hmi_pwd on=> bool out);

Table 8- 139 Data types for the parameters

Parameter and type Data type Description

REQ IN Bool Perform function if REQ=1

F_PWD IN Bool Fail-safe password: Allow (=1) or disallow (=0)

FULL_PWD IN Bool Full access password: Allow (=1) or disallow (=0) full access password
R_PWD IN Bool Read access password: Allow (=1) or disallow (=0)
HMI_PWD IN Bool HMI password: Allow (=1) or disallow (=0)

F_PWD_ON ouT Bool Fail-safe password status: Allowed (=1) or disallowed (=0)
FULL_PWD_ON ouT Bool Full access password status: Allowed (=1) or disallowed (=0)
R_PWD_ON ouT Bool Read only password status: Allowed (=1) or disallowed (=0)
HMI_PWD_ON ouT Bool HMI password status: Allowed (=1) or disallowed (=0)
Ret_Val ouT Word Function result

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

307

Basic instructions

8.8 Program control operations

308

Calling ENDIS_PW with REQ=1 disallows password types where the corresponding
password input parameter is FALSE. Each password type can be allowed or disallowed
independently. For example, if the fail-safe password is allowed and all other passwords
disallowed, then you can restrict CPU access to a small group of employees.

ENDIS_PW is executed synchronously in a program scan and the password output
parameters always show the current state of password allowance independent of the input
parameter REQ. All passwords that you set to allow must be changeable to
disallowed/allowed. Otherwise, an error is returned and all passwords are allowed that were
allowed before ENDIS_PW execution. This means that in a standard CPU (where the fail-
safe password is not configured) F_PWD must always be set to 1, to result in a return value
of 0. In this case, F_PWD_ON is always 1.

Note

e ENDIS_PW execution can block the access of HMI devices, if the HMI password is
disallowed.

¢ Client sessions that were authorized prior to ENDIS_PW execution remain unchanged by
ENDIS_PW execution.

After a power-up, CPU access is restricted by passwords previously defined in the regular
CPU protection configuration. The ability to disallow a valid password must be re-established
with a new ENDIS_PW execution. However, if ENDIS_PW is immediately executed and
necessary passwords are disallowed, then TIA portal access can be locked out. You can use
a timer instruction to delay ENDIS_PW execution and allow time to enter passwords, before
the passwords become disallowed.

Note
Restoring a CPU that locks out TIA portal communication

Refer to the "Recovery from a lost password|(Page 151)" topic for details about how to erase
the internal load memory of a PLC using a memory card.

An operating mode change to STOP caused by errors, STP execution or STEP 7 does not
abolish the protection. The protection is valid until the CPU is power cycled. See the
following table for details.

Action Operating mode ENDIS_PW password control

After memory reset from STOP Active: Disallowed passwords

STEP 7 remain disallowed.

After powering on, or changing | STOP Off: No passwords are disal-

a memory card lowed.

After ENDIS_PW executionina | STARTUP, RUN Active: Passwords are disal-

program cycle or startup OB lowed according to ENDIS_PW
parameters

After change of the operating STOP Active: Disallowed passwords

mode from RUN or STARTUP remain disallowed

to STOP through STP instruc-

tion, error, or STEP 7

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8.6

8.8 Program conftrol operations

Note

Password protect CPU access levels with strong passwords. Strong passwords are at least
ten characters in length, mix letters, numbers, and special characters, are not words that can
be found in a dictionary, and are not names or identifiers that can be derived from personal
information. Keep the password secret and change it frequently.

Table 8- 140 Condition codes

RET_VAL Description

(W#16#...)

0000 No error

8090 The instruction is not supported.

80D0 The password for fail-safe is not configured.

80D1 The password for read/write access is not configured.
80D2 The password for read access is not configured.
80D3 The password for HMI access is not configured.

RE_TRIGR (Restart cycle monitoring time)

Table 8- 141 RE_TRIGR instruction

LAD / FBD SCL Description
— RE_TRIGR() ; RE_TRIGR (Re-trigger scan time watchdog) is used to extend the maximum
RE_TRIGH . .
—EH ENO - time allowed before the scan cycle watchdog timer generates an error.

Use the RE_TRIGR instruction to restart the scan cycle monitoring timer during a single scan
cycle. This has the effect of extending the allowed maximum scan cycle time by one
maximum cycle time period, from the last execution of the RE_TRIGR function.

Note

Prior to S7-1200 CPU firmware version 2.2, RE_TRIGR was restricted to execution from a
program cycle OB and could be used to extend the PLC scan time indefinitely. ENO =
FALSE and the watchdog timer is not reset when RE_TRIGR was executed from a start up
OB, an interrupt OB, or an error OB.

For firmware version 2.2 and later, RE_TRIGR can be executed from any OB (including start
up, interrupt, and error OBs). However, the PLC scan can only be extended by a maximum
of 10x the configured maximum cycle time.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 309

Basic instructions

8.8 Program control operations

Setting the PLC maximum cycle time

Configure the value for maximum scan cycle time in the Device configuration for "Cycle
time".

Table 8- 142 Cycle time values

Cycle time monitor Minimum value Maximum value Default value
Maximum cycle time 1ms 6000 ms 150 ms

Watchdog timeout

If the maximum scan cycle timer expires before the scan cycle has been completed, an error
is generated. If the user program includes a time error interrupt OB (OB 80), the CPU
executes the time error interrupt OB, which can include program logic to create a special
reaction.

If the user program does not include a time error interrupt OB, the first timeout condition is
ignored and the CPU remains in RUN mode. If a second maximum scan time timeout occurs
in the same program scan (2 times the maximum cycle time value), then an error is triggered
that causes a transition to STOP mode.

In STOP mode, your program execution stops while CPU system communications and
system diagnostics continue.

8.8.7 STP (Exit program)

Table 8- 143 STP instruction

LAD / FBD SCL Description

e STP() ; STP puts the CPU in STOP mode. When the CPU is in STOP mode, the

JEN END = execution of your program and physical updates from the process image are
stopped.

For more information see: Configuring the outputs on a RUN-to-STOP transition|(Page 116).

If EN = TRUE, then the CPU goes to STOP mode, the program execution stops, and the
ENO state is meaningless. Otherwise, EN = ENO = 0.

S7-1200 Programmable controller
310 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8 Program conftrol operations

8.8.8 GET_ERROR and GET_ERROR_ID (Get error and error ID locally) instructions

The get error instructions provide information about program block execution errors. If you
add a GET_ERROR or GET_ERROR_ID instruction to your code block, you can handle
program errors within your program block.

GET_ERROR

Table 8- 144 GET_ERROR instruction

LAD / FBD SCL Description
GET_ERROR (_out) ; Indicates that a local program block execution error has occurred
GET_ERROR ;) . . .
“en EnG - and fills a predefined error data structure with detailed error infor-
ERROR mation.

Table 8- 145 Data types for the parameters

Parameter Data type Description

ERROR ErrorStruct Error data structure: You can rename the structure, but not the
members within the structure.

Table 8- 146 Elements of the ErrorStruct data structure

Structure components Data type Description
ERROR_ID Word Error ID
FLAGS Byte Shows if an error occurred during a block call.

e 16#01: Error during a block call.
e 16#00: No error during a block call.
REACTION Byte Default reaction:

e 0: Ignore (write error),

e 1: Continue with substitute value "0" (read error),
e 2: Skip instruction (system error)

CODE_ADDRESS CREF Information about the address and type of block
BLOCK_TYPE Byte Type of block where the error occurred:
e 1:0B
e 2:FC
e 3:FB
CB_NUMBER Ulnt Number of the code block
OFFSET UDInt Reference to the internal memory
MODE Byte Access mode: Depending on the type of access, the following infor-
mation can be output:
Mde | @& [® [© | ©® | @

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 311

Basic instructions

8.8 Program control operations

Structure components Data type Description
0
1 Offset
2 Area
3 Location | Scope Number
4 Area Offset
5 Area DB no. Offset
6 PtrNo. Area DB no. Offset
/Acc
7 PtrNo./ | Slot No. / Area DB no. Offset
Acc Scope
OPERAND_NUMBER Ulnt Operand number of the machine command
POINTER_NUMBER _ Ulnt (A) Internal pointer
LOCATION
SLOT_NUMBER_SCOPE Ulnt (B) Storage area in internal memory
DATA_ADDRESS NREF Information about the address of an operand
AREA Byte (C) Memory area:
o L:16#40 - 4E, 86, 87, 8E, 8F, CO-CE
o | 16#81
o Q: 16#82
o M: 16#83
« DB: 16#84, 85, 8A, 8B
DB_NUMBER Ulnt (D) Number of the data block
OFFSET UDInt (E) Relative address of the operand
GET_ERROR_ID
Table 8- 147 GetErrorID instruction
LAD / FBD SCL Description
SET ERRLID GET_ERR ID(); Indicate_s tha_t_a program block execution error has occurred and reports
Jen N — the ID (identifier code) of the error.
D
Table 8- 148 Data types for the parameters
Parameter Data type Description
ID Word Error identifier values for the ErrorStruct ERROR_ID member

S7-1200 Programmable controller
312 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8 Program conftrol operations

Table 8- 149 Error_ID values

ERROR_ID hexa- | ERROR_ID decimal Program block execution error
decimal

0 0 No error

2520 9504 Corrupted string

2522 9506 Operand out of range read error
2523 9507 Operand out of range write error
2524 9508 Invalid area read error

2525 9509 Invalid area write error

2528 9512 Data alignment read error (incorrect bit alignment)
2529 9513 Data alignment write error (incorrect bit alignment)
252C 9516 Uninitialized pointer error

2530 9520 DB write protected

2533 9523 Invalid pointer used

2538 9528 Access error: DB does not exist
2539 9529 Access error: Wrong DB used
253A 9530 Global DB does not exist

253C 9532 Wrong version or FC does not exist
253D 9533 Instruction does not exist

253E 9534 Wrong version or FB does not exist
253F 9535 Instruction does not exist

2550 9552 Access error: DB does not exist
2575 9589 Program nesting depth error

2576 9590 Local data allocation error

2942 10562 Physical input point does not exist
2943 10563 Physical output point does not exist
Operation

By default, the CPU responds to a block execution error by logging an error in the
diagnostics buffer. However, if you place one or more GET_ERROR or GET_ERROR_ID
instructions within a code block, this block is now set to handle errors within the block. In this
case, the CPU does not log an error in the diagnostics buffer. Instead, the error information
is reported in the output of the GET_ERROR or GET_ERROR_ID instruction. You can read
the detailed error information with the GET_ERROR instruction, or read just the error
identifier with GET_ERROR_ID instruction. Normally the first error is the most important, with
the following errors only consequences of the first error.

The first execution of a GET_ERROR or GET_ERROR_ID instruction within a block returns
the first error detected during block execution. This error could have occurred anywhere
between the start of the block and the execution of either GET_ERROR or GET_ERROR_ID.
Subsequent executions of either GET_ERROR or GET_ERROR_ID return the first error
since the previous execution of GET_ERROR or GET_ERROR_ID. The history of errors is
not saved, and execution of either instruction will re-arm the PLC system to catch the next
error.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 313

Basic instructions

8.8 Program control operations

The ErrorStruct data type used by the GET_ERROR instruction can be added in the data
block editor and block interface editors, so your program logic can access these values.
Select ErrorStruct from the data type drop-down list to add this structure. You can create
multiple ErrorStruct elements by using unique names. The members of an ErrorStruct cannot
be renamed.

Error condition indicated by ENO

If EN = TRUE and GET_ERROR or GET_ERROR_ID executes, then:
e ENO = TRUE indicates a code block execution error occurred and error data is present
® ENO = FALSE indicates no code block execution error occurred

You can connect error reaction program logic to ENO which activates after an error occurs. If
an error exists, then the output parameter stores the error data where your program has
access to it.

GET_ERROR and GET_ERROR_ID can be used to send error information from the currently
executing block (called block) to a calling block. Place the instruction in the last network of
the called block program to report the final execution status of the called block.

8.8.9 RUNTIME (Measure program runtime)

Table 8- 150 RUNTIME instruction

LAD / FBD

SCL Description

RUNTIME
=EN ENOD =
MEM Ret_Wal

Ret Val := RUNTIME (Measures the runtime of the entire program, individual blocks, or

lread inout); command sequences.

314

If you want to measure the runtime of your entire program, call the instruction "Measure
program runtime" in OB 1. Measurement of the runtime is started with the first call and the
output RET_VAL returns the runtime of the program after the second call. The measured
runtime includes all CPU processes that can occur during the program execution, for
example, interruptions caused by higher-level events or communication. The instruction
"Measure program runtime" reads an internal counter of the CPU and write the value to the
IN-OUT parameter MEM. The instruction calculates the current program runtime according
to the internal counter frequency and writes it to output RET_VAL.

If you want to measure the runtime of individual blocks or individual command sequences,
you need three separate networks. Call the instruction "Measure program runtime" in an
individual network within your program. You set the starting point of the runtime
measurement with this first call of the instruction. Then you call the required program block
or the command sequence in the next network. In another network, call the "Measure
program runtime" instruction a second time and assign the same memory to the IN-OUT
parameter MEM as you did during the first call of the instruction. The "Measure program
runtime" instruction in the third network reads an internal CPU counter and calculates the
current runtime of the program block or the command sequence according to the internal
counter frequency and writes it to the output RET_VAL.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.8 Program conftrol operations

The Measure program runtime" instruction uses an internal high-frequency counter to
calculate the time. If the counter overruns, the instruction returns values <= 0.0. Ignore these
runtime values.

Note

The CPU cannot exactly determine the runtime of a command sequence, because the
sequence of instructions within a command sequence changes during optimized compilation
of the program.

Table 8- 151 Data types for the parameters

Parameter Data type Description
MEM LReal Starting poing of the runtime measurement
RET_VAL LReal Measured runtime in seconds

Example: RUNTIME instruction

The following example shows the use of the RUNTIME instruction to measure the execution
time of a function block:

Network 1:
| “Tag_1" RUNTIME
| | EN ENQ ———
"Iem” MEM Ret_val "Ret_val_1"
Network 2:
"Block_1_DB"
“Block_1~
EN ENO
Network 3:
“Tag_1" RUNTIME
| | EN ENQ —————
“Iem” MEM Ret_Wal “Ret_Val_2"

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 315

Basic instructions

8.8 Program control operations

8.8.10

8.8.10.1

When the "Tag_1" operand in network 1 has the signal state "1", the RUNTIME instruction
executes. The starting point for the runtime measurement is set with the first call of the
instruction and buffered as reference for the second call of the instruction in the "Mem"
operand.

The function block FB1 executes in network 2.

When the FB1 program block completes and the "Tag_1" operand has the signal state "1",
the RUNTIME instruction in network 3 executes. The second call of the instruction calculates
the runtime of the program block and writes the result to the output RET_VAL_2.

SCL program control statements

Overview of SCL program control statements

Structured Control Language (SCL) provides three types of program control statements for
structuring your user program:

Selective statements: A selective statement enables you to direct program execution into
alternative sequences of statements.

Loops: You can control loop execution using iteration statements. An iteration statement
specifies which parts of a program should be iterated depending on certain conditions.

Program jumps: A program jump means an immediate jump to a specified jump
destination and therefore to a different statement within the same block.

These program control statements use the syntax of the PASCAL programming language.

Table 8- 152 Types of SCL program control statements

Program control statement

Description

Selective IF-THEN statement Enables you to direct program execution into one of two alternative
(Page 317) branches, depending on a condition being TRUE or FALSE
CASE statement Enables the selective execution into 1 of n alternative branches, based
(Page 318) on the value of a variable

Loop FOR statement Repeats a sequence of statements for as long as the control variable
(Page 320) remains within the specified value range

WHILE-DO statement
(Page 321)

Repeats a sequence of statements while an execution condition con-
tinues to be satisfied

REPEAT-UNTIL state-
ment (Page|322)

Repeats a sequence of statements until a terminate condition is met

Program jump

CONTINUE statement
(Page 323)

Stops the execution of the current loop iteration

EXIT statement

Exits a loop at any point regardless of whether the terminate condition

(Page 324) is satisfied or not

GOTO statement Causes the program to jump immediately to a specified label

(Page 325)

RETURN statement Causes the program to exit the block currently being executed and to
(Page 325) return to the calling block

316

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8.10.2 IF-THEN statement

8.8 Program conftrol operations

The IF-THEN statement is a conditional statement that controls program flow by executing a
group of statements, based on the evaluation of a Bool value of a logical expression. You
can also use brackets to nest or structure the execution of multiple IF-THEN statements.

Table 8- 153 Elements of the IF-THEN statement

SCL

Description

IF "condition" THEN
statement A;
statement B;
statement C;

’

If "condition" is TRUE or 1, then execute the following statements until en-
countering the END_IF statement.

If "condition" is FALSE or 0, then skip to END_IF statement (unless the
program includes optional ELSIF or ELSE statements).

[ELSIF "condition-n" THEN
statement N;

|

The optional ELSEIF' statement provides additional conditions to be evalu-
ated. For example: If "condition" in the IF-THEN statement is FALSE, then
the program evaluates "condition-n". If "condition-n" is TRUE, then execute
"statement_N".

[ELSE
statement_X;

71

The optional ELSE statement provides statements to be executed when the
"condition" of the IF-THEN statement is FALSE.

END_IF;

The END_IF statement terminates the IF-THEN instruction.

T You can include multiple ELSIF statements within one IF-THEN statement.

Table 8- 154 Variables for the IF-THEN statement

Variables Description

"condition"

Required. The logical expression is either TRUE (1) or FALSE (0).

"statement_A"

Optional. One or more statements to be executed when "condition" is TRUE.

"condition-n"

Optional. The logical expression to be evaluated by the optional ELSIF statement.

"statement_N"
TRUE.

Optional. One or more statements to be executed when "condition-n" of the ELSIF statement is

"statement_X"

is FALSE.

Optional. One or more statements to be executed when "condition" of the IF-THEN statement

An |IF statement is executed according to the following rules:

® The first sequence of statements whose logical expression = TRUE is executed. The
remaining sequences of statements are not executed.

® [f no Boolean expression = TRUE, the sequence of statements introduced by ELSE is
executed (or no sequence of statements if the ELSE branch does not exist).

e Any number of ELSIF statements can exist.

Note

Using one or more ELSIF branches has the advantage that the logical expressions
following a valid expression are no longer evaluated in contrast to a sequence of IF
statements. The runtime of a program can therefore be reduced.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

317

Basic instructions

8.8 Program control operations

8.8.10.3 CASE statement

Table 8- 155 Elements of the CASE statement

SCL Description

CASE "Test Value" OF The CASE statement executes one of several
"Valuelist": Statement[; Statement, ...] groups of statements, depending on the value
"ValuelList": Statement[; Statement, ...] of an expression.

[ELSE

Else-statement[; Else-statement, ...]]

END CASE;

Table 8- 156 Parameters

Parameter

Description

"Test_Value"

Required. Any numeric expression of data type Int

"ValueList"

Required. A single value or a comma-separated list of values or ranges of values. (Use two
periods to define a range of values: 2..8) The following example illustrates the different vari-
ants of the value list:

1: Statement_A;

2, 4: Statement _B;

3,5..7,9: Statement _C;

Statement

Required. One or more statements that are executed when "Test_Value" matches any value
in the value list

Else-statement

Optional. One or more statements that are executed if no match with a value of the "Val-
uelList" stated matches

318

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions
8.8 Program conftrol operations

The CASE statement is executed according to the following rules:
® The Test_value expression must return a value of the type Int.

e When a CASE statement is processed, the program checks whether the value of the
Test_value expression is contained within a specified list of values. If a match is found,
the statement component assigned to the list is executed.

e [f no match is found, the program section following ELSE is executed or no statement is
executed if the ELSE branch does not exist.

Example: Nested CASE statements

CASE statements can be nested. Each nested case statement must have an associated
END_CASE statement.

CASE "varl" OF

1 : #var2 := 'A';
2 : $#§var2 := 'B';

ELSE
CASE "var3" OF

65..90: #var2 := 'UpperCase';

97..122: #var2 := 'LowerCase';
ELSE

#var2:= 'SpecialCharacter';
END_CASE;

END_CASE;

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 319

Basic instructions

8.8 Program control operations

8.8.10.4 FOR statement

Table 8- 157 Elements of the FOR statement

SCL Description
FOR "control_ variable" := "begin" TO "end" A FOR statement is used to repeat a sequence of
[BY "increment"] DO statements as long as a control variable is within
statement; the specified range of values. The definition of a
. loop with FOR includes the specification of an
END FOR; initial and an end value. Both values must be the

same type as the control variable.

You can nest FOR loops. The END_FOR state-
ment refers to the last executed FOR instruction.

Table 8- 158 Parameters

Parameter Description

"control_variable" Required. An integer (Int or DInt) that serves as a loop counter

"begin" Required. Simple expression that specifies the initial value of the control variables

"end" Required. Simple expression that determines the final value of the control variables
"increment" Optional. Amount by which a "control variable" is changed after each loop. The "increment"

has the same data type as "control variable". If the "increment" value is not specified, then
the value of the run tags will be increased by 1 after each loop. You cannot change "incre-
ment" during the execution of the FOR statement.

The FOR statement executes as follows:

® At the start of the loop, the control variable is set to the initial value (initial assignment)
and each time the loop iterates, it is incremented by the specified increment (positive
increment) or decremented (negative increment) until the final value is reached.

® Following each run through of the loop, the condition is checked (final value reached) to
establish whether or not it is satisfied. If the end condition is not satisfied, the sequence of
statements is executed again, otherwise the loop terminates and execution continues
with the statement immediately following the loop.

Rules for formulating FOR statements:

® The control variable may only be of the data type Int or Dint.

® You can omit the statement BY [increment]. If no increment is specified, it is automatically

assumed to be +1.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 324). The EXIT statement executes the statement immediately following the

END_FOR statement.

Use the CONTINUE statement/(Page|323) to skip the subsequent statements of a FOR loop
and to continue the loop with the examination of whether the condition is met for termination.

320

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8 Program conftrol operations

8.8.10.5 WHILE-DO statement

Table 8- 159 WHILE statement

SCL Description
WHILE "condition" DO The WHILE statement performs a series of statements until a given condition is
Statement; TRUE.
Statement; You can nest WHILE loops. The END_WHILE statement refers to the last executed
.7 WHILE instruction.
END WHILE;

Table 8- 160 Parameters

Parameter Description

"condition” Required. A logical expression that evaluates to TRUE or FALSE. (A "null" condition is inter-
preted as FALSE.)

Statement Optional. One or more statements that are executed until the condition evaluates to TRUE.

Note

The WHILE statement evaluates the state of "condition" before executing any of the
statements. To execute the statements at least one time regardless of the state of
"condition", use the REPEAT statement|(Page 322).

The WHILE statement executes according to the following rules:
® Prior to each iteration of the loop body, the execution condition is evaluated.

e The loop body following DO iterates as long as the execution condition has the value
TRUE.

e Once the value FALSE occurs, the loop is skipped and the statement following the loop is
executed.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page|324). The EXIT statement executes the statement immediately following the
END_WHILE statement.

Use the CONTINUE statement to skip the subsequent statements of a WHILE loop and to
continue the loop with the examination of whether the condition is met for termination.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 321

Basic instructions
8.8 Program control operations

8.8.10.6 REPEAT-UNTIL statement

Table 8- 161 REPEAT instruction

SCL Description
REPEAT The REPEAT statement executes a group of statements until a given condition is
Statement; TRUE.
; You can nest REPEAT loops. The END_REPEAT statement always refers to the last
UNTIL "condition" executed Repeat instruction.
END REPEAT;

Table 8- 162 Parameters

Parameter Description

Statement Optional. One or more statements that are executed until the condition is TRUE.

"condition" Required. One or more expressions of the two following ways: A numeric expression or string
expression that evaluates to TRUE or FALSE. A "null" condition is interpreted as FALSE.

Note

Before evaluating the state of "condition", the REPEAT statement executes the statements
during the first iteration of the loop (even if "condition" is FALSE). To review the state of
"condition" before executing the statements, use the WHILE statement (Page 321).

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 324). The EXIT statement executes the statement immediately following the
END_REPEAT statement.

Use the CONTINUE statement /(Page | 323) to skip the subsequent statements of a REPEAT
loop and to continue the loop with the examination of whether the condition is met for
termination.

S7-1200 Programmable controller
322 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8.10.7

8.8 Program conftrol operations

CONTINUE statement

Table 8- 163 CONTINUE statement

SCL

Description

CONTINUE

Statement;

’

The CONTINUE statement skips the subsequent statements of a program loop (FOR,
WHILE, REPEAT) and continues the loop with the examination of whether the condition is
met for termination. If this is not the case, the loop continues.

The CONTINUE statement executes according to the following rules:
® This statement immediately terminates execution of a loop body.

® Depending on whether the condition for repeating the loop is satisfied or not the body is
executed again or the iteration statement is exited and the statement immediately
following is executed.

® |n a FOR statement, the control variable is incremented by the specified increment
immediately after a CONTINUE statement.

Use the CONTINUE statement only within a loop. In nested loops CONTINUE always refers
to the loop that includes it immediately. CONTINUE is typically used in conjunction with an IF
statement.

If the loop is to exit regardless of the termination test, use the EXIT statement.
Example: CONTINUE statement

The following example shows the use of the CONTINUE statement to avoid a division-by-0
error when calculating the percentage of a value:
FOR i := 0 TO 10 DO
IF value[i] = 0 THEN CONTINUE; END_IF;
p := part / value[i] * 100;

s := INT_TO_STRING(p) ;
percent := CONCAT(INl:=s, IN2:="%");
END_FOR;

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 323

Basic instructions
8.8 Program control operations

8.8.10.8 EXIT statement

Table 8- 164 EXIT instruction

SCL Description
EXIT; An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT) at any point, regardless of whether
the terminate condition is satisfied.

The EXIT statement executes according to the following rules:

® This statement causes the repetition statement immediately surrounding the exit
statement to be exited immediately.

® Execution of the program is continued after the end of the loop (for example after
END_FOR).

Use the EXIT statement within a loop. In nested loops, the EXIT statement returns the
processing to the next higher nesting level.

Example: EXIT statement

FOR i := 0 TO 10 DO

CASE value[i, 0] OF
1..10: value [i, 1]:="A";
11..40: value [i, 1]:="B";
41..100: value [i, 1]:="C";

ELSE

EXIT;

END_CASE;

END_FOR;

S7-1200 Programmable controller
324 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.8.10.9

8.8 Program conftrol operations

GOTO statement

Table 8- 165 GOTO statement

SCL

Description

Statement;

’

GOTO JumpLabel ;

JumpLabel: Statement; The name of a jump label can only be assigned once within a block. Each jump

The GOTO statement skips over statements by jumping to a label in the same
block.

The jump label ("JumpLabel") and the GOTO statement must be in the same block.

label can be the target of several GOTO statements.

8.8.10.10

It is not possible to jump to a loop section (FOR, WHILE or REPEAT). It is possible to jump
from within a loop.

Example: GOTO statement

In the following example: Depending on the value of the "Tag_value" operand, the execution
of the program resumes at the point defined by the corresponding jump label. If "Tag_value"
equals 2, the program execution resumes at the jump label "MyLabel2" and skips
"MyLabel1".

CASE "Tag_value" OF
1 : GOTO MyLabell;
2 : GOTO Mylabel2;
ELSE GOTO MyLabel3;
END_CASE;

MyLabell: "Tag_ 1" :
MyLabel2: "Tag 2" :=
MyLabel3: "Tag 4" := 1;

]
[

RETURN statement

Table 8- 166 RETURN instruction

SCL

Description

RETURN ;

The Return instruction exits the code block being executed without conditions. Program execu-
tion returns to the calling block or to the operating system (when exiting an OB).

Example: RETURN instruction:
IF "Error" <> 0 THEN
RETURN

END_IF;

Note

After executing the last instruction, the code block automatically returns to the calling block.
Do not insert a RETURN instruction at the end of the code block.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 325

Basic instructions
8.9 Word logic operations

8.9 Word logic operations

8.9.1 AND, OR, and XOR logic operation instructions

Table 8- 167 AND, OR, and XOR logic operation instructions

LAD / FBD SCL Description
T out := inl AND in2; AND: Logical AND
777
EM EMO = out := inl OR in2; OR: Logical OR
T out := inl XOR in2; XOR: Logical EXCLUSIVE OR

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

N2 To add an input, click the "Create" icon or right-click on an input stub for one of the
[:E existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 8- 168 Data types for the parameters

Parameter Data type Description
IN1, IN2 Byte, Word, DWord Logical inputs
ouT Byte, Word, DWord Logical output

1 The data type selection sets parameters IN1, IN2, and OUT to the same data type.

The corresponding bit values of IN1 and IN2 are combined to produce a binary logic result at
parameter OUT. ENO is always TRUE following the execution of these instructions.

S7-1200 Programmable controller
326 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.9 Word logic operations

8.9.2 INV (Create ones complement)

Table 8- 169 INV instruction

LAD / FBD SCL Description
I Not available Calculates the binary one's complement of the parameter IN. The one's
INV
w | complement is formed by inverting each bit value of the IN parameter
—EH ENO — (changing each 0 to 1 and each 1 to 0). ENO is always TRUE following
{IN our | the execution of this instruction.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 170 Data types for the parameters

Parameter Data type Description

IN Sint, Int, Dint, USInt, Ulnt, UDInt, Byte, Word, DWord Data element to invert
ouT Sint, Int, DInt, USInt, Uint, UDInt, Byte, Word, DWord Inverted output
8.9.3 DECO (Decode) and ENCO (Encode) instructions

Table 8- 171 ENCO and DECO instruction

LAD / FBD SCL Description
S out := ENCO(_in_); Encodes a bit pattern to a binary number
M | The ENCO instruction converts parameter IN to the binary number
= EMN EMO = corresponding to the bit position of the least-significant set bit of
L S parameter IN and returns the result to parameter OUT. If parame-
ter IN is either 0000 0001 or 0000 0000, then a value of 0 is re-
turned to parameter OUT. If the parameter IN value is 0000 0000,
then ENO is set to FALSE.
BT out := DECO(_in_); Decodes a binary number to a bit pattern
| m | The DECO instruction decodes a binary number from parameter

—EN END - IN, by setting the corresponding bit position in parameter OUT to
{IN ot a 1 (all other bits are set to 0). ENO is always TRUE following

execution of the DECO instruction.

Note: The default data type for the DECO instruction is DWORD.

In SCL, change the instruction name to DECO_BYTE or

DECO_WORD to decode a byte or word value, and assign to a

byte or word tag or address.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 327

Basic instructions

8.9 Word logic operations

Table 8- 172 Data types for the parameters

Parameter Data type Description

IN ENCO: Byte, Word, DWord ENCO: Bit pattern to encode
DECO: Ulint DECO: Value to decode

ouT ENCO: Int ENCO: Encoded value
DECO: Byte, Word, DWord DECO: Decoded bit pattern

Table 8- 173 ENO status

ENO Condition Result (OUT)
1 No error Valid bit number
0 IN is zero OUT is set to zero

The DECO parameter OUT data type selection of a Byte, Word, or DWord restricts the
useful range of parameter IN. If the value of parameter IN exceeds the useful range, then a
modulo operation is performed to extract the least significant bits shown below.

DECO parameter IN range:

e 3 bits (values 0-7) IN are used to set 1 bit position in a Byte OUT
® 4-bits (values 0-15) IN are used to set 1 bit position in a Word OUT
e 5 bits (values 0-31) IN are used to set 1 bit position in a DWord OUT

Table 8- 174 Examples

DECO IN value DECO OUT value (Decode single bit position)

Byte OUT Min. IN 0 00000001

8 bits Max. IN 7 10000000

Word OUT Min. IN 0 0000000000000001

16 bits Max. IN 15 1000000000000000

DWord OUT Min. IN 0 00000000000000000000000000000001

32 bits Max. IN 31 10000000000000000000000000000000

S7-1200 Programmable controller

328 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8.9.4

Table 8- 175 SEL (select) instruction

8.9 Word logic operations

SEL (Select), MUX (Multiplex), and DEMUX (Demultiplex) instructions

IMO
1M1

LAD / FBD SCL Description
il out := SEL(SEL assigns one of two input values to parameter OUT, depending
277 g:=_bool in, on the parameter G value.
EM EMO in0:-_variant_in,
G auT inl:= variant_in);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8- 176 Data types for the SEL instruction

Parameter Data type 1 Description
G Bool e 0 selects INO
e 1 selects IN1
INO, IN1 Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, DWord, Inputs
Time, Date, TOD, Char, WChar
ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord, | Output
Time, Date, TOD, Char, WChar

1 Input variables and the output variable must be of the same data type.

Condition codes: ENO is always TRUE following execution of the SEL instruction.

Table 8- 177 MUX (multiplex) instruction

LAD / FBD

SCL

Description

MUX

e
EM ENO
K ouT
[NO
INT=E
ELSE

out := MUX(
k:= unit_in,
inl:=variant_in,
in2:=variant_in,

[...in32:=variant_in,]
inelse:=variant_in);

MUX copies one of many input values to parameter OUT, depending
on the parameter K value. If the parameter K value exceeds (INn7- 1),
then the parameter ELSE value is copied to parameter OUT.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

329

Basic instructions
8.9 Word logic operations

M 23 To add an input, click the "Create" icon or right-click on an input stub for one of
ELSE E the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 8- 178 Data types for the MUX instruction

Parameter Data type Description
K Ulnt e 0 selects IN1
o 1 selects IN2

e nselects INn

INO, IN1, .. INn Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Inputs
Time, Date, TOD, Char, WChar

ELSE Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Input substitute value (optional)
Time, Date, TOD, Char, WChar
ouT Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Output

Time, Date, TOD, Char, WChar

1 Input variables and the output variable must be of the same data type.

Table 8- 179 DEMUX (Demultiplex) instruction

LAD / FBD SCL Description
D DEMUX (DEMUX copies the value of the location assigned to parameter IN to
77 k:= unit in, one of many outputs. The value of the K parameter selects which
EM END - in:=variant in, output selected as the destination of the IN value. If the value of K is
K ouTo outl:=variant in, greater than the number (OUTn - 1) then the IN value is copied to
N s=0UTH out2:=variant in, location assigned to the ELSE parameter.
ELSE -

[...out32:=variant_in,]

outelse:=variant in);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

= 0UT] To add an output, click the "Create" icon or right-click on an output stub for one
LSE of the existing OUT parameters and select the "Insert output" command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

S7-1200 Programmable controller
330 System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

Table 8- 180 Data types for the DEMUX instruction

8.9 Word logic operations

Parameter Data type 1 Description
K Ulnt Selector value:
e 0 selects OUT1
e 1 selects OUT2
e nselects OUTn
IN Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, Input
DWord, Time, Date, TOD, Char, WChar
OuUTO, OUT1, .. | Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, | Outputs
OUTn DWord, Time, Date, TOD, Char, WChar
ELSE Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, | Substitute output when K is greater than
DWord, Time, Date, TOD, Char, WChar (OUTn - 1)

1 The input variable and the output variables must be of the same data type.

Table 8- 181 ENO status for the MUX and DEMUX instructions

ENO Condition Result OUT

1 No error MUX: Selected IN value is copied to
ouT
DEMUX: IN value is copied to selected
ouT

0 MUX: K is greater than the number of inputs -1

e No ELSE provided: OUT is un-
changed,

e ELSE provided, ELSE value assigned
to OUT

DEMUX: K is greater than the number of outputs -1

e No ELSE provided: outputs are un-
changed,

e ELSE provided, IN value copied to
ELSE

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

331

Basic instructions

8. 10 Shift and rotate

8.10 Shift and rotate
8.10.1 SHR (Shift right) and SHL (Shift left) instructions
Table 8- 182 SHR and SHL instructions
LAD / FBD SCL Description
SR out := SHR(Use the shift instructions (SHL and SHR) to shift the bit pattern of
7" in:= variant in _, parameter IN. The result is assigned to parameter OUT. Parame-
~EM ENDi— n:= uint in); ter N specifies the number of bit positions shifted:
1IN ouT |
! out := SHL(e SHR: Shift bit pattern right

‘N

in:= variant in ,

n:= uint in);

e SHL: Shift bit pattern left

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 8- 183 Data types for the parameters
Parameter Data type Description
IN Integers Bit pattern to shift
N USInt, UDint Number of bit positions to shift
ouT Integers Bit pattern after shift operation

® For N=0, no shift occurs. The IN value is assigned to OUT.

e Zeros are shifted into the bit positions emptied by the shift operation.

e [f the number of positions to shift (N) exceeds the number of bits in the target value (8 for
Byte, 16 for Word, 32 for DWord), then all original bit values will be shifted out and
replaced with zeros (zero is assigned to OUT).

® ENO is always TRUE for the shift operations.

Table 8- 184 Example: SHL for Word data

Shift the bits of a Word to the left by inserting zeroes from the right (N = 1)

IN 1110 0010 1010 1101

OUT value before first shift:

1110 0010 1010 1101

After first shift left:

1100 0101 0101 1010

After second shift left:

1000 1010 1011 0100

After third shift left:

0001 0101 0110 1000

332

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

Basic instructions

8. 10 Shift and rotate

8.10.2 ROR (Rotate right) and ROL (Rotate left) instructions

Table 8- 185 ROR and ROL instructions

LAD / FBD SCL Description
T out := ROL(Use the rotate instructions (ROR and ROL) to rotate the bit pattern of
7y in:= variant in _, parameter IN. The result is assigned to parameter OUT. Parameter N
=EN ENO = n:= uint _in); defines the number of bit positions rotated.
I: el out := ROR(e ROR: Rotate bit pattern right
i 1n:=—‘_’arlént—m—’ o ROL: Rotate bit pattern left
n:= uint in);

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 8- 186 Data types for the parameters

Parameter Data type Description

IN Integers Bit pattern to rotate

N USint, UDint Number of bit positions to rotate
ouT Integers Bit pattern after rotate operation

® For N=0, no rotate occurs. The IN value is assigned to OUT.

® Bit data rotated out one side of the target value is rotated into the other side of the target
value, so no original bit values are lost.

e [f the number of bit positions to rotate (N) exceeds the number of bits in the target value
(8 for Byte, 16 for Word, 32 for DWord), then the rotation is still performed.

® ENO is always TRUE following execution of the rotate instructions.

Table 8- 187 Example: ROR for Word data

Rotate bits out the right -side into the left -side (N = 1)

IN 0100 0000 0000 0001 OUT value before first rotate: 0100 0000 0000 0001
After first rotate right: 1010 0000 0000 0000
After second rotate right: 0101 0000 0000 0000

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 333

Basic instructions

8. 10 Shift and rotate

S7-1200 Programmable controller
334 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.1 Date, time-of-day, and clock functions

9.1.1 Date and time-of-day instructions
Use the date and time instructions for calendar and time calculations.

e T_CONV converts a value to or from (date and time data types) and (byte, word, and
dword size data types)

e T_ADD adds Time and DTL values: (Time + Time = Time) or (DTL + Time = DTL)
e T_SUB subtracts Time and DTL values: (Time - Time = Time) or (DTL - Time = DTL)

e T_DIFF provides the difference between two DTL values as a Time value: DTL - DTL =
Time

e T_COMBINE combines a Date value and a Time_and_Date value to create a DTL value

For information about the format of DTL and Time data, refer to the section on the Time and
Date data types|(Page 128).

Table 9-1 T_CONV (Convert times and extract) instruction

LAD / FBD SCL example Description
T — out := DINT TO_TIME (T_CONV converts a value to or from (date and time data types) and
T_CONV
277 10 T in:= variant_in); (byte, word, and dword size data types).
—EN END [
L Ou| out := TIME_TO_DINT(
in:= variant in);

1 For LAD and FBD boxes: Click "???" and select the source/target data types from the drop-down menu.
2 For SCL: Drag T_CONYV from instruction tree and drop into the program editor, then select the source/target data types.

Table 9-2 Valid data types for T_CONV conversions

Data type IN (or OUT) Data types OUT (or IN)

TIME (milliseconds) Dint, Int, Sint, UDInt, Ulnt, USInt, TOD
SCL only: Byte, Word, Dword

DATE (number of days since Jan. 1 1990) Dint, Int, Sint, UDInt, UInt, USInt, DTL

SCL only: Byte, Word, Dword

TOD (milliseconds since midnight- 24:00:00.000) | Dint, Int, Sint, UDInt, Ulnt, USInt, TIME, DTL
SCL only: Byte, Word, Dword

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 335

Extended instructions

9.1 Date, time-of-day, and clock functions

Note
Using T_CONYV to convert a larger data size to a smaller data size

Data values can be truncated when you convert a larger data type with more bytes to a
smaller data type with less bytes. If this error occurs, then ENO is set to 0.

Conversion to/from DTL data type

DTL (Date and Time Long) contains year, month, date, and time data. DTL data can be
converted to/from DATE and TOD data types.

However, DTL conversion with DATE data only affects the year, month, and day values. DTL
conversion with TOD data only affects the hour, minutes, and seconds values.

When T_CONYV converts to DTL, the unaffected data elements in the DTL format are left
unchanged.

Table 9-3 T_ADD (Add times) and T_SUB (Subtract times) instructions

LAD / FBD SCL Description
T TADD | out := T_ADD(T_ADD adds the input IN1 value (DTL or Time data types) with the
777 1o Time inl:= variant in, input IN2 Time value. Parameter OUT provides the DTL or Time value
—EH ENO - in2:= time in); result. Two data type operations are possible:
im ouTt} - -) : .
iz e Time + Time = Time
e DTL + Time = DTL
(S T out := T_SUB(T_SUB subtracts the IN2 Time value from IN1 (DTL or Time value).
777 to Time | inl:= variant in, Parameter OUT provides the difference value as a DTL or Time data
—EM EMO - in2:= time in); type. Two data type operations are possible.
Il ouT | - -)) '
lin2 e Time-Time =Time

e DTL-Time=DTL

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 9- 4 Data types for the T_ADD and T_SUB parameters

Parameter and type Data type Description

IN11 IN DTL, Time DTL or Time value

IN2 IN Time Time value to add or subtract
ouT ouT DTL, Time DTL or Time sum or difference

1 Select the IN1 data type from the drop-down list available below the instruction name. The IN1 data type selection also
sets the data type of parameter OUT.

S7-1200 Programmable controller
336 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.1 Dafe, time-of-day, and clock functions

Table 9-5 T_DIFF (Time difference) instruction
LAD / FBD SCL Description
FOIEET out := T_DIFF(T_DIFF subtracts the DTL value (IN2) from the DTL value (IN1). Pa-
OTL to Time ! inl:= DTL_ in, rameter OUT provides the difference value as a Time data type.
=EN END;— in2 :=_DTL_in) ; e DTL-DTL = Time
Il ouT |
{In2 [
Table 9- 6 Data types for the T_DIFF parameters
Parameter and type Data type Description
IN1 IN DTL DTL value
IN2 IN DTL DTL value to subtract
ouT ouT Time Time difference
Condition codes: ENO = 1 means no error occurred. ENO = 0 and parameter OUT =0
errors:
® |nvalid DTL value
® |nvalid Time value
Table 9-7 T_COMBINE (Combine times) instruction
LAD / FBD SCL Description
out := T_COMBINE combines a Date value and a Time_of_Day
Time_DLE—aSDT'ng‘;E CONCAT_DATE_TOD (value to create a DTL value.
- EN END Inl := _date_in,
M1 out In2 := _tod_in);
12

T Note that the T_COMBINE instruction in the Extended Instructions equates to the CONCAT_DATE_TOD function in

SCL.
Table 9- 8 Data types for the T_COMBINE parameters
Parameter and type Data type Description
IN1 IN Date Date value to be combined must be between DATE#1990-
01-01 and DATE#2089-12-31
IN2 IN Time_of_Day Time_of_Day values to be combined
ouT ouT DTL DTL value

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

337

Extended instructions

9.1 Date, time-of-day, and clock functions

9.1.2

338

Clock functions

AAWARNING

If an attacker can access your networks through Network Time Protocol (NTP)
synchronization, the attacker can possibly take limited control of your process by shifting
the CPU system time.

The NTP client feature of the S7-1200 CPU is disabled by default, and, when enabled, only
allows configured IP addresses to act as an NTP server. The CPU disables this feature by
default, and you must configure this feature to allow remotely-controlled CPU system time
corrections.

The S7-1200 CPU supports "time of day" interrupts and clock instructions that depend upon
accurate CPU system time. If you configure NTP and accept time synchronization from a
server, you must ensure that the server is a trusted source. Failure to do so can cause a
security breach that allows an unknown user to take limited control of your process by
shifting the CPU system time.

For security information and recommendations, please see our "Operational Guidelines for
Industrial Security" (http://www.industry.siemens.com/topics/global/en/industrial-
security/Documents/operational_guidelines_industrial_security_en.pdf) on the Siemens
Service and Support site.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

http://www.industry.siemens.com/topics/global/en/industrial-security/Documents/operational_guidelines_industrial_security_en.pdf
http://www.industry.siemens.com/topics/global/en/industrial-security/Documents/operational_guidelines_industrial_security_en.pdf

Extended instructions

9.1 Dafe, time-of-day, and clock functions

Use the clock instructions to set and read the CPU system clock. The data type DTL
(Page|128) is used to provide date and time values.

Table 9- 9 System time instructions
LAD / FBD SCL Description
[WASYST | ret val := WR_SYS_T (Set time-of-day) sets the CPU time of day clock
- L — WR_SYS T(with a DTL value at parameter IN. This time value does not in-
N RETVAL| clude local time zone or daylight saving time offsets.
in:= DTL in);
[REETST ret val := RD_SYS_T (Read time-of-day) reads the current system time
. L m—- RD_SYS T(from the CPU. This time value does not include local time zone
| mervar| or daylight saving time offsets.
s out=> DTL out) ;
[HBBET | ret val := RD_LOC_T (Read local time) provides the current local time of
L HiE .- RD_LOC_T(the CPU as a DTL data type. This time value reflects the local
[merval time zone adjusted appropriately for daylight saving time (if con-
el out=> DTL out); |figured).
T ret_val := WR_LOC_T (Write local time) sets the date and time of the CPU
‘ oL WR_LOC_T (clock. You assign the date and time information as local time at
=EN EMC

LOCTIME
05T

Rer_val

LOCTIME:=DTL in_,
DST:_in_;

LOCTIME with DTL data type. The instruction uses the
TimeTransformationRule (Page| 342)" DB structure to calculate
the system time. The granularity of the time information for local
time and system time is product-specific and is at least one milli-
second. Input values at the LOCTIME parameter which are less
than those supported by the CPU are rounded up during system
time calculation.

Note: You must use the CPU device configuration to set the
"Time of day" properties (time zone, DST activation, DST start,
and DST stop). Otherwise, WR_LOC_T cannot interpret the DST
time change.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

339

Extended instructions

9.1 Date, time-of-day, and clock functions

Table 9- 10 Data types for the parameters

Parameter and type

Data type Description

IN

DTL Time of day to set in the CPU system clock

ouT

ouT DTL RD_SYS_T: Current CPU system time

RD_LOC_T: Current local time, including any adjustment for
daylight saving time, if configured

LOCTIME

DTL WR_LOC_T: Local time

DST

BOOL WR_LOC_T: Daylight Saving Time only evaluated during the
"double hour" when the clocks change to daylight saving time.

e TRUE = daylight saving time (first hour)
e FALSE = standard time (second hour)

RET_VAL

ouT Int Execution condition code

340

The local time is calculated by using the time zone and daylight saving time offsets that
you set in the device configuration general tab "Time of day" parameters.

Time zone configuration is an offset to UTC or GMT time.

Daylight saving time configuration specifies the month, week, day, and hour when
daylight saving time begins.

Standard time configuration also specifies the month, week, day, and hour when standard
time begins.

The time zone offset is always applied to the system time value. The daylight saving time
offset is only applied when daylight saving time is in effect.

Note
Daylight saving and standard start time configuration

The "Time of day" properties for "Start for daylight saving time" of the CPU device
configuration must be your local time.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.1 Dafte, time-of-day, and clock functions

Condition codes; ENO = 1 means no error occurred. ENO = 0 means an execution error
occurred, and a condition code is provided at the RET_VAL output.

RET_VAL (W#16#....) | Description

0000 The current local time is in standard time.

0001 Daylight saving time has been configured, and the current local time is in daylight saving time.
8080 Local time not available or LOCTIME value is invalid.

8081 lllegal year value or time value assigned by the LOCTIME parameter is invalid

8082 lllegal month value (byte 2 in DTL format)

8083 lllegal day value (byte 3 in DTL format)

8084 lllegal hour value (byte 5 in DTL format)

8085 lllegal minute value (byte 6 in DTL format)

8086 lllegal second value (byte 7 in DTL format)

8087 lllegal nanosecond value (bytes 8 to 11 in DTL format)

8089 Time value does not exist (hour already passed upon changeover to daylight saving time)
80B0 The real-time clock has failed

80B1 The "TimeTransformationRule" structure has not been defined.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 341

Extended instructions

9.1 Date, time-of-day, and clock functions

9.1.3 TimeTransformationRule data structure

Description

The changeover rules for standard and daylight saving time are defined in the
TimeTransformationRule structure. The structure is as follows:

Name Data type Description
TimeTransformationRule STRUCT
Bias INT Time difference between local time and UTC [minutes]
Range: -1439 to 1439
DaylightBias INT Time difference between daylight saving and standard time [minutes]
Range: 0 to 60
DaylightStartMonth USINT Month of conversion to daylight saving time
Range: 1to 12
DaylightStartWeek USINT Week of conversion to daylight saving time
1 = First occurrence of the weekday in the month, ...,
5 = Last occurrence of the weekday in the month
DaylightStartWeekday USINT Weekday of daylight saving time changeover:
1 = Sunday
DaylightStartHour USINT Hour of daylight saving time changeover:
Range: 0 to 23
DaylightStartMinute USINT Minute of daylight saving time changeover
Range: 0 to 59
StandardStartMonth USINT Month of conversion to standard time
Range: 1 to 12
StandardStartWeek USINT Week of conversion to standard time
1 = First occurrence of the weekday in the month, ...,
5 = Last occurrence of the weekday in the month
StandardStartWeekday USINT Weekday of standard time changeover:
1 = Sunday
StandardStartHour USINT Hour of standard time changeover
Range: 0 to 23
StandardStartMinute USINT Minute of standard time changeover
Range: 0 to 59
TimeZoneName STRING[80] Name of time zone: "(GMT+01:00) Amsterdam, Berlin, Bern, Rome,

Stockholm, Vienna"

342

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.14

SET_TIMEZONE (Set timezone)

Table 9- 11 SET_TIMEZONE instruction

9.1 Dafe, time-of-day, and clock functions

LAD / FBD

SCL

Description

"SET

2 —
TIMEZOME_DE"
SET_TIMEZOME

— EM
= REQ
TimeZone

DCHE —

BUSY =

ERRIIFR /=1
STATUS

"SET_TIMEZONE_DB" (
REQ:= bool_in,

Timezone:=_struct_in, |the CPU system time to local time.
DONE=> bool_out_,
BUSY=> bool_out_,
ERROR=> bool out_,
STATUS=> word out_);

Sets the local time zone and daylight sav-
ing parameters that are used to transform

T In the SCL example, "SET_TIMEZONE_DB" is the name of the instance DB.

Table 9- 12 Data types for the parameters

Parameter and type Data type Description

REQ IN Bool REQ=1: execute function

Timezone IN TimeTransformationRule | Rules for the transformation from system time to

local time

DONE ouT Bool Function complete

BUSY ouT Bool Function busy

ERROR ouT Bool Error detected

STATUS ouT Word Function result / error message
To manually configure the time zone parameters for the CPU, use the "Time of day"
properties of the "General" tab of the device configuration.
Use the SET_TIMEZONE instruction to set the local time configuration. The parameters of
the "TimeTransformationRule|(Page 342)" structure assign the local time zone and timing for
automatic switching between standard time and daylight saving time.
Condition codes: ENO = 1 means no error occurred. ENO = 0 means an execution error
occurred, and a condition code is provided at the STATUS output.

STATUS Description

(W#16#....)

0 No error

7000 No job processing active

7001 Start of job processing. Parameter BUSY =1, DONE = 0

7002 Intermediate call (REQ irrelevant): Instruction already active; BUSY has the value "1".

808x Error at x-th component: For example 8084 indicates that DaylightStartWeekif is not a value from 1to 5.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

343

Extended instructions

9.1 Date, time-of-day, and clock functions

9.1.5

RTM (Runtime meters)

Table 9- 13 RTM instruction

LAD / FBD SCL Description
RTM(NR:=_uint_in_, The RTM (Runtime Meters) instruction can set, start, stop, and
e T o MODE:= byte in_, read the runtime hour meters in the CPU.
MR RET_WAL PV:= dint_in_,
tODE o CQ=> bool out_,
P L Cv=> dint out_);

Table 9- 14 Data types for the parameters

Parameter and type Data type Description
NR IN Ulint Runtime meter number: (possible values: 0..9)
MODE IN Byte RTM Execution mode number:
e 0 = Fetch values (the status is then written to CQ and the
current value to CV)
e 1 = Start (at the last counter value)
e 2=Stop
e 4 = Set (to the value specified in PV)
o 5= Set (to the value specified in PV) and then start
e 6 = Set (to the value specified in PV) and then stop
e 7 =Save all RTM values in the CPU to the MC (memory
card)
PV IN Dint Preset hours value for the specified runtime meter
RET_VAL ouT Int Function result / error message
CQ ouT Bool Runtime meter status (1 = running)
(1Y) ouT Dint Current runtime hours value for the specified meter
The CPU operates up to 10 runtime hour meters to track the runtime hours of critical control
subsystems. You must start the individual hour meters with one RTM execution for each
timer. All runtime hour meters are stopped when the CPU makes a run-to-stop transition.
You can also stop individual timers with RTM execution mode 2.
When a CPU makes a stop-to-run transition, you must restart the hour timers with one RTM
execution for each timer that is started. After a runtime meter value is greater than
2147483647 hours, counting stops and the "Overflow" error is sent. You must execute the
RTM instruction once for each timer to reset or modify the timer.
A CPU power failure or power cycle causes a power-down process that saves the current
runtime meter values in retentive memory. Upon CPU power-up, the stored runtime meter
values are reloaded to the timers and the previous runtime hour totals are not lost. The
runtime meters must be restarted to accumulate additional runtime.
S7-1200 Programmable controller
344 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions

9.1 Dafe, time-of-day, and clock functions

Your program can also use RTM execution mode 7 to save the runtime meter values in a
memory card. The states of all timers at the instant RTM mode 7 is executed are stored in
the memory card. These stored values can become incorrect over time as the hour timers
are started and stopped during a program run session. You must periodically update the
memory card values to capture important runtime events. The advantage that you get from
storing the RTM values in the memory card is that you can insert the memory card in a
substitute CPU where your program and saved RTM values will be available. If you did not
save the RTM values in the memory card, then the timer values would be lost (in a substitute
CPU).

Note
Avoid excessive program calls for memory card write operations

Minimize flash memory card write operations to extend the life of the memory card.

Table 9- 15 Condition codes

RET_VAL (W#16#....) Description

0 No error

8080 Incorrect runtime meter number

8081 A negative value was passed to the parameter PV
8082 Overflow of the operating hours counter

8091 The input parameter MODE contains an illegal value
80B1 Value cannot be saved to MC (MODE=7)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 345

Extended instructions

9.2 String and character

9.2

9.2.1

String and character

String data overview

String data type

String data is stored as a 2-byte header followed by up to 254 character bytes of ASCII
character codes. A String header contains two lengths. The first byte is the maximum length
that is given in square brackets when you initialize a string, or 254 by default. The second
header byte is the current length that is the number of valid characters in the string. The
current length must be smaller than or equal to the maximum length. The number of stored
bytes occupied by the String format is 2 bytes greater than the maximum length.

Initialize your String data

String input and output data must be initialized as valid strings in memory, before execution
of any string instructions.

Valid String data

9.2.2

Table 9- 16 String move instruction

A valid string has a maximum length that must be greater than zero but less than 255. The
current length must be less than or equal to the maximum length.

Strings cannot be assigned to | or Q memory areas.

For more information see: Format of the String data type|(Page 130).

S_MOVE (Move character string)

LAD / FBD SCL Description
S e out := in; Copy the source IN string to the OUT location. S_MOVE execution does not affect
—EM EMO the contents of the source string.
I aut

Table 9- 17 Data types for the parameters

Parameter Data type Description
IN String Source string
ouT String Target address
If the actual length of the string at the input IN exceeds the maximum length of a string
stored at output OUT, then the part of the IN string which can fit in the OUT string is copied.
S7-1200 Programmable controller
346 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2.3

9.2.3.1

9.2 String and character

String conversion instructions

S_CONYV, STRG_VAL, and VAL_STRG (Convert to/from character string and number)

instructions

You can convert number character strings to number values or number values to number
character strings with these instructions:

® S_CONV converts (number string to a number value) or (number value to a number
string)

® STRG_VAL converts a number string to a number value with format options

® VAL_STRG converts a number value to a number string with format options

S_CONV (convert character string)

Table 9- 18 String conversion instruction

LAD / FBD SCL Description
e out := Converts a character string to the corresponding value, or a value
¥ 10 7 <Type> TO_<Type>(in) ; to the corresponding character string. The S_CONYV instruction
—EN ENO - has no output formatting options. This makes the S_CONYV in-

IN___ouT|

struction simpler, but less flexible than the STRG_VAL and
VAL_STRG instructions.

For LAD / FBD: Click the "???" and select the data type from the drop-down list.

For SCL: Select S_CONV from the Extended Instructions, and answer the prompts for the data types for the conversion.
STEP 7 then provides the appropriate conversion instruction.

2

Table 9- 19 Data types (string to value)

Parameter and type Data type Description

IN IN String, WString Input character string

ouT ouT String, WString, Char, WChar, Sint, Int, Dint, USInt, Ulnt, UDInt, | Output number value
Real, LReal

Conversion of the string parameter IN starts at the first character and continues until the end
of the string, or until the first character is encountered that is not "0" through "9", "+", "-", or
"". The result value is provided at the location specified in parameter OUT. If the output
number value does not fit in the range of the OUT data type, then parameter OUT is set to 0
and ENO is set to FALSE. Otherwise, parameter OUT contains a valid result and ENO is set

to TRUE.
Input String format rules:

® [f a decimal point is used in the IN string, you must use the "." character.

® Comma characters "," used as a thousands separator to the left of the decimal point are
allowed and ignored.

® | eading spaces are ignored.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 347

Extended instructions

9.2 String and character

S_CONV (value to string conversion)

Table 9-20 Data types (value to string)

Parameter and type

Data type Description

IN

IN

String, WString, Char, WChar, Sint, Int, Dint, USInt, Uint, UDInt, Input number value
Real, LReal

ouT

ouT

String, WString Output character string

348

An integer, unsigned integer, or floating point value IN is converted to the corresponding
character string at OUT. The parameter OUT must reference a valid string before the
conversion is executed. A valid string consists of a maximum string length in the first byte,
the current string length in the second byte, and the current string characters in the next
bytes. The converted string replaces characters in the OUT string starting at the first
character and adjusts the current length byte of the OUT string. The maximum length byte of
the OUT string is not changed.

How many characters are replaced depends on the parameter IN data type and number
value. The number of characters replaced must fit within the parameter OUT string length.
The maximum string length (first byte) of the OUT string should be greater than or equal to
the maximum expected number of converted characters. The following table shows S_CONV
value to string conversion examples:

Output String format rules:
® \/alues written to parameter OUT do not use a leading "+" sign.
® Fixed-point representation is used (no exponential notation).

e The period character "." is used to represent the decimal point when parameter IN is the
Real data type.

e \Values are right-justified in the output string and are preceded by space characters that
fill empty character positions.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character
Table 9-21 Maximum string lengths for each data type
IN data type Character Converted string example? Total string length including maximum and current length
positions bytes
allocated by
S_CONV
USint 4 "x255" | 6
Sint 4 "-128" | 6
Ulint 6 "x65535" | 8
Int 6 "-32768" | 8
UDInt 11 "x4294967295" | 13
Dint 11 "-2147483648" | 13
Real 14 "x-3.402823E+38" | 16
"x-1.175495E-38"
"x+1.175495E-38"
"x+3.402823E+38"
LReal 21 "-1.7976931348623E+308" | 23
"-2.2250738585072E-308"
"+2.2250738585072E-308"
"+1.7976931348623E+308"

T The "x" characters represent space characters that fill empty positions in the right-justified field that is allocated for the
converted value.

STRG_VAL (convert characer string to numerical value)

Table 9-22 String-to-value instruction

LAD / FBD SCL Description
e : "STR?-_VAL" (. . Qonverts a number gharacter string to the corresponding
Shing 1o 777 in:= string in, integer or floating point representation.
—EN END = format:= word_in,
{IN ouT | p:=uint_in,
::DF‘H'“ out=> variant_out) ;

' For LAD / FBD: Click the "???" and select the data type from the drop-down list.

Table 9- 23 Data types for the STRG_VAL instruction

Parameter and type Data type Description
IN IN String, WString The ASCII character string to convert
FORMAT IN Word Output format options
P IN Uint, Byte, USInt IN: Index to the first character to be converted (first
character = 1)
ouT ouT Sint, Int, DInt, USInt, Ulnt, UDInt, | Converted number value
Real, LReal

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 349

Extended instructions

9.2 String and character

Conversion begins in the string IN at character offset P and continues until the end of the
string, or until the first character is encountered that is not "+", "-", ".", ",", "e", "E", or "0" to
"9". The result is placed at the location specified in parameter OUT.

String data must be initialized before execution as a valid string in memory.
The FORMAT parameter for the STRG_VAL instruction is defined below. The unused bit

positions must be set to zero.

Table 9- 24 Format of the STRG_VAL instruction

Bit
16

Bit8 | Bit7 Bit 0

0 0 0 0

f = Notation format

r = Decimal point format

1= Exponential notation
0 = Fixed point notation

1 ="," (comma character)
0 ="." (period character)

Table 9- 25 Values of the FORMAT parameter

FORMAT (W#16#) Notation format Decimal point representation
0000 (default) Fixed point "

0001

0002 Exponential "

0003

0004 to FFFF lllegal values

Rules for STRG_VAL conversion:

e |[f the period character

is used for the decimal point, then commas "," to the left of the

decimal point are interpreted as thousands separator characters. The comma characters

are allowed and ignored.

e [f the comma character

is used for the decimal point, then periods "." to the left of the

decimal point are interpreted as thousands separator characters. These period
characters are allowed and ignored.

® | eading spaces are ignored.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character
VAL_STRG (convert numerical value to string)
Table 9-26 Value-to-string operation
LAD / FBD SCL Description
) "VAL_STRG" (Converts an integer, unsigned integer, or floating point
“:?';Tgm in:= variant_in, value to the corresponding character string representa-
—EH i ENO = size:= usint_in, tion.
{IN ouT - prec:=_usint_in,
1SEZE format:= word_in,
{PREC s -
| FORMAT p:=uint_in,
p out=> string out);
' For LAD / FBD: Click the "???" and select the data type from the drop-down list.
Table 9- 27 Data types for the VAL_STRG instruction
Parameter and type Data type Description
IN IN Sint, Int, DInt, USInt, Ulnt, | Value to convert
UDInt, Real, LReal
SIZE IN USint Number of characters to be written to the OUT string
PREC IN USint The precision or size of the fractional portion. This does
not include the decimal point.
FORMAT IN Word Output format options
P IN Uint, Byte, USInt IN: Index to the first OUT string character to be replaced
(first character = 1)
ouT ouT String, WString The converted string

This instruction converts the value represented by parameter IN to a string referenced by
parameter OUT. The parameter OUT must be a valid string before the conversion is
executed.

The converted string replaces characters in the OUT string starting at character offset count
P to the number of characters specified by parameter SIZE. The number of characters in
SIZE must fit within the OUT string length, counting from character position P. If the SIZE
parameter is zero, then the characters overwrite at position P in the OUT string without
limitation. This instruction is useful for embedding number characters into a text string. For
example, you can put the numbers "120" into the string "Pump pressure = 120 psi".

Parameter PREC specifies the precision or number of digits for the fractional part of the
string. If the parameter IN value is an integer, then PREC specifies the location of the
decimal point. For example, if the data value is 123 and PREC = 1, then the result is "12.3".
The maximum supported precision for the Real data type is 7 digits.

If parameter P is greater than the current size of the OUT string, then spaces are added, up
to position P, and the result is appended to the end of the string. The conversion ends if the
maximum OUT string length is reached.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 351

Extended instructions

9.2 String and character

The FORMAT parameter for the VAL_STRG instruction is defined below. The unused bit
positions must be set to zero.

Table 9- 28 Format of the VAL_STRG instruction

Bit Bit8 | Bit7 Bit 0
16
0 0 0 0 0 0 0 0 0 0 0 0 0 s f r

s = Number sign character 1= use sign character "+" and "-"
0 = use sign character "-" only

f = Notation format 1= Exponential notation
0 = Fixed point notation

r = Decimal point format 1 ="," (comma character)
0 ="." (period character)

Table 9-29 Values of the FORMAT parameter

FORMAT (WORD) Number sign character Notation format Decimal point representation
W#16#0000 """ only Fixed point

W#16#0001

W#16#0002 Exponential

W#16#0003

W#16#0004 "+"and "-" Fixed Point

W#16#0005

W#16#0006 Exponential

Wi#16#0007

W#16#0008 to W#16#FFFF | lllegal values

352

Parameter OUT string format rules:

Leading space characters are added to the leftmost part of the string when the converted
string is smaller than the specified size.

When the FORMAT parameter sign bit is FALSE, unsigned and signed integer data type
values are written to the output buffer without the leading "+" sign. The "-" sign is used if
required.

<leading spaces><digits without leading zeroes>'."<PREC digits>

When the sign bit is TRUE, unsigned and signed integer data type values are written to
the output buffer always with a leading sign character.

<leading spaces><sign><digits without leading zeroes>".'<PREC digits>

When the FORMAT is set to exponential notation, Real data type values are written to the
output buffer as:

<leading spaces><sign><digit> "' <PREC digits>'E' <sign><digits without leading zero>

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character

e When the FORMAT is set to fixed point notation, integer, unsigned integer, and real data
type values are written to the output buffer as:

<leading spaces><sign><digits without leading zeroes>".'<PREC digits>

® | eading zeros to the left of the decimal point (except the digit adjacent to the decimal
point) are suppressed.

e Values to the right of the decimal point are rounded to fit in the number of digits to the
right of the decimal point specified by the PREC parameter.

® The size of the output string must be a minimum of three bytes more than the number of
digits to the right of the decimal point.

e \/alues are right-justified in the output string.

Conditions reported by ENO

When the conversion operation encounters an error, the instruction returns the following

results:
® ENOis settoO.
e OUT is set to 0, or as shown in the examples for string to value conversion.

e OUT is unchanged, or as shown in the examples when OUT is a string.

Table 9- 30 ENO status

ENO

Description

No error

lllegal or invalid parameter; for example, an access to a DB that does not exist

lllegal string where the maximum length of the string is 0 or 255

lllegal string where the current length is greater than the maximum length

The converted number value is too large for the specified OUT data type.

O | ool |Oo |~

The OUT parameter maximum string size must be large enough to accept the number of characters
specified by parameter SIZE, starting at the character position parameter P.

o

lllegal P value where P=0 or P is greater than the current string length

Parameter SIZE must be greater than parameter PREC.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 353

Extended instructions

9.2 String and character

Table 9- 31 Example of S_CONV string to value conversion

IN string OUT data type OUT value ENO

"123" Int or Dint 123 TRUE
"-00456" Int or Dint -456 TRUE
"123.45" Int or Dint 123 TRUE
"+2345" Int or Dint 2345 TRUE
"00123AB" Int or Dint 123 TRUE
"123" Real 123.0 TRUE
"123.45" Real 123.45 TRUE
"1.23e-4" Real 1.23 TRUE
"1.23E-4" Real 1.23 TRUE
"12,345.67" Real 12345.67 TRUE
"3.4e39" Real 3.4 TRUE
"-3.4e39" Real -3.4 TRUE
"1.17549e-38" Real 1.17549 TRUE
"12345" Sint 0 FALSE
"A123" N/A 0 FALSE
N/A 0 FALSE
"++123" N/A 0 FALSE
"+-123" N/A 0 FALSE

Table 9- 32 Examples of S_CONYV value to string conversion

Data type IN value OUT string * ENO

Ulnt 123 "xxx123" | TRUE
Ulnt 0 "xxxxx0" | TRUE
UDiInt 12345678 "xxx12345678" | TRUE
Real +9123.456 "xx+9.123456E+3" | TRUE
LReal +9123.4567890123 "xx+9.1234567890123 | TRUE

E+3"

Real -INF "XxxxxxxxxxxINF" | FALSE
Real +INF "XXXXXXXXXXXINF" | FALSE
Real NaN "xxxxxxxxxxxNaN" | FALSE

1 The "x" characters represent space characters that fill empty positions in the right-justified field
that is allocated for the converted value.

S7-1200 Programmable controller
354 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character
Table 9- 33 Example: STRG_VAL conversion
IN string FORMAT OUT data type OUT value ENO
(W#16#....)

"123" 0000 Int or Dint 123 TRUE
"-00456" 0000 Int or Dint -456 TRUE
"123.45" 0000 Int or DInt 123 TRUE
"+2345" 0000 Int or Dint 2345 TRUE
"00123AB" 0000 Int or Dint 123 TRUE
"123" 0000 Real 123.0 TRUE
"-00456" 0001 Real -456.0 TRUE
"+00456" 0001 Real 456.0 TRUE
"123.45" 0000 Real 123.45 TRUE
"123.45" 0001 Real 12345.0 TRUE
"123.45" 0000 Real 12345.0 TRUE
"123.45" 0001 Real 123.45 TRUE
".00123AB" 0001 Real 123.0 TRUE
"1.23e-4" 0000 Real 1.23 TRUE
"1.23E-4" 0000 Real 1.23 TRUE
"1.23E-4" 0002 Real 1.23E-4 TRUE
"12,345.67" 0000 Real 12345.67 TRUE
"12,345.67" 0001 Real 12.345 TRUE
"3.4e39" 0002 Real +INF TRUE
"-3.4e39" 0002 Real -INF TRUE
"1.1754943e-38" 0002 Real 0.0 TRUE
(and smaller)

"12345" N/A Sint 0 FALSE
"A123" N/A N/A 0 FALSE
N/A N/A 0 FALSE
"++123" N/A N/A 0 FALSE
"+-123" N/A N/A 0 FALSE

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 355

Extended instructions

9.2 String and character

The following examples of VAL_STRG conversions are based on an OUT string initialized as
follows:

n "
Current Temp = xxxxxxxxxx C
nn

where the "x" character represents space characters allocated for the converted value.

Table 9- 34 Example: VAL_STRG conversion

Data type | IN value P SIZE FORMAT PREC |OUT string ENO
(W#16#....)
Ulnt 123 16 10 0000 0 Current Temp = TRUE
Ulnt 0 16 10 0000 2 Current Temp = TRUE
UDInt 12345678 16 10 0000 3 Current Temp = TRUE
UDInt 12345678 16 10 0001 3 CoEEgRt Te™R = TRUE
Int 123 16 10 0004 0 Current Temp = TRUE
Int -123 16 10 0004 0 Current Temp = TRUE
Real -0.00123 16 10 0004 4 Gurzent Temp = xxx- TRUE
Real -0.00123 16 10 0006 4 usrent Temp = - TRUE
Real -INF 16 10 N/A 4 Gurrent Teme = FALSE
Real +INF 16 10 N/A 4 Current Temp = FALSE
Real NaN 16 10 N/A 4 Current Temp = FALSE
UDInt 12345678 16 6 N/A 3 Current Temp = FALSE

S7-1200 Programmable controller
356 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2.3.2 Strg_TO_Chars and Chars_TO_Strg

CHAR) instructions

9.2 String and character

(Convert to/from character string and array of

Strg_TO_Chars copies an ASCII character string into an array of character bytes.

Chars_TO_Strg copies an array of ASCII character bytes into a character string.

Note

Only the zero based array types (Array [0..n] of Char) or (Array [0..n] of Byte) are allowed as
the input parameter Chars for the Chars_TO_Strg instruction, or as the IN_OUT parameter
Chars for the Strg_TO_Chars instruction.

Table 9- 35 Strg_TO_Chars instruction

LAD / FBD SCL

Description

Strg TO_Chars(

Strg_To_Chars))

—EN EMG = Strg:=_string_in_,
Strg cnt pChars:= dint_in_,
pChars Cnt=>_uint_out_,
Chars

Chars:= variant inout);

The complete input string Strg is copied to an array of
characters at IN_OUT parameter Chars.

The operation overwrites bytes starting at array element
number specified by the pChars parameter.

Strings of all supported max lengths (1..254) may be used.

An end delimiter is not written; this is your responsibility.
To set an end delimiter just after the last written array
character, use the next array element number
[pChars+Cnt].

Table 9- 36 Data types for the parameters (Strg_TO_Chars)

Parameter and type Data type Description

Strg IN String, WString Source string

pChars IN Dint Array element number for the first string character written to
the target array

Chars IN_OUT Variant The Chars parameter is a pointer to a zero-based array
[0..n] of characters copied from the input string. The array
can be declared in a DB or as local variables in the block
interface.
Example: "DB1".MyArray points to MyArray [0..10] of Char
element values in DB1.

Cnt ouT Ulint Count of characters copied

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

357

Extended instructions

9.2 String and character

Table 9- 37 Chars_TO_Strg instruction

LAD / FBD SCL Description
Chare 70 Stg Chars_TO_Strg(All or part of an array of characters is copied to a string.
— EMN END — Chars:= variant in_, The output string must be declared before Chars_TO_Strg is
Chars Strg pChars:=_dint_in_, executed. The string is then overwritten by the
pChars Cnt:=_uint_in_, Chars_TO_Strg operation.
cnit Strg=>_string_out); | gtrings of all supported maximum lengths (1..254) may be
used.

The string maximum length value is not changed by
Chars_TO_Strg operation. Copying from array to string stops
when the maximum string length is reached.

A nul character '$00' or 16#00 value in the character array
works as a delimiter and ends copying of characters into the
string.

Table 9- 38 Data types for the parameters (Chars_TO_Strg)

Parameter and type Data type Description

Chars IN Variant The Chars parameter is a pointer to zero based array [0..n] of
characters to be converted into a string. The array can be de-
clared in a DB or as local variables in the block interface.
Example: "DB1".MyArray points to MyArray [0..10] of Char
element values in DB1.

pChars IN Dint Element number for the first character in the array to copy.
Array element [0] is the default value.

Cnt IN Ulnt Count of characters to copy: 0 means all

Strg ouT String, WString Target string

Table 9- 39 ENO status

ENO Description

1 No error

0 Chars_TO_Strg: Attempt to copy more character bytes to the output string than allowed by the maximum
length byte in the string declaration

0 Chars_TO_Strg: The nul character (16#00) value was found in the input character byte array.

0 Strg_TO_Chars: Attempt to copy more character bytes to the output array than are allowed by the element
number limit

358

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions
9.2 String and character

9.23.3 ATH and HTA (Convert to/from ASCII string and hexadecimal number) instructions

Use the ATH (ASCII to hexadecimal) and HTA (hexadecimal to ASCII) instructions for
conversions between ASCII character bytes (characters 0 to 9 and uppercase A to F only)
and the corresponding 4-bit hexadecimal nibbles.

Table 9-40 ATH instruction

LAD / FBD SCL Description
— A ret_val := ATH(Converts ASCII characters into packed hexadecimal digits.
In in:= variant in_,
=EM END = n:= int in_,
M RET_ WAL |
. Ll out=> variant out_);

Table 9-41 Data types for the ATH instruction

Parameter type Data Type Description

IN IN Variant Pointer to ASCII character byte array

N IN Ulint Number of ASCII character bytes to convert
RET_VAL ouT Word Execution condition code

ouT ouT Variant Pointer to the converted hexadecimal byte array

Conversion begins at the location specified by parameter IN and continues for N bytes. The
result is placed at the location specified by OUT. Only valid ASCII characters 0 to 9, lower
case a to f, and uppercase A to F can be converted. Any other character will be converted to
Zero.

8-bit ASCII coded characters are converted to 4-bit hexadecimal nibbles. Two ASCII
characters can converted into a single byte containing two 4-bit hexadecimal nibbles.

The IN and OUT parameters specify byte arrays and not hexadecimal String data. ASCII
characters are converted and placed in the hexadecimal output in the same order as they
are read. If there are an odd number of ASCII characters, then zeros are put in the right-
most nibble of the last converted hexadecimal digit.

Table 9-42 Examples: ASCII-to-hexadecimal (ATH) conversion

IN character bytes N OUT value ENO
'0a23' 4 W#16#0A23 TRUE
'"123AFx1a23' 10 16#123AF01023 FALSE
'a23' 3 Wi#16#A230 TRUE

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 359

Extended instructions

9.2 String and character

Table 9- 43 HTA instruction

LAD / FBD SCL Description
e ret_val := HTA(Converts packed hexadecimal digits to their corresponding ASCII
—En END — in:= variant in_, character bytes.
IM FET_WAL n:= uint in ,
K auT out=> variant out);

Table 9- 44 Data types for the HTA instruction

Parameter and type Data Type Description

IN IN Variant Pointer to input byte array

N IN Ulint Number of bytes to convert (each input byte has two 4-bit nibbles and
produces 2N ASCII characters)

RET_VAL ouT Word Execution condition code

ouT ouT Variant Pointer to ASCII character byte array

Conversion begins at the location specified by parameter IN and continues for N bytes. Each
4-bit nibble converts to a single 8-bit ASCII character and produces 2N ASCII character
bytes of output. All 2N bytes of the output are written as ASCII characters 0 to 9 through
uppercase A to F. The parameter OUT specifies a byte array and not a string.

Each nibble of the hexadecimal byte is converted into a character in the same order as they
are read in (left-most nibble of a hexadecimal digit is converted first, followed by the right-
most nibble of that same byte).

Table 9-45 Examples: Hexadecimal -to- ASCII (HTA) conversion

IN value N OUT character bytes ENO (ENO always TRUE after HTA execution)
W#16#0123 2 '0123' TRUE
DW#16#123AF012 4 '"123AF012' TRUE

S7-1200 Programmable controller
360 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character
Table 9- 46 ATH and HTA condition codes
RET_VAL Description ENO
(W#16#....)
0000 No error TRUE
0007 Invalid ATH input character: A character was found that was not an ASCII character 0- | FALSE
9, lowercase a to f, or uppercase A to F
8101 lllegal or invalid input pointer, for example, an access to a DB that does not exist. FALSE
8120 Input string is an invalid format, i.e., max= 0, max=255, current>max, or grant length in | FALSE
pointer < max
8182 Input buffer is too small for N FALSE
8151 Data type not allowed for input buffer FALSE
8301 lllegal or invalid output pointer, for example, an access to a DB that does not exist. FALSE
8320 Output string is an invalid format, i.e., max= 0, max=255, current>max, or grant length | FALSE
in pointer < max
8382 Output buffer is too small for N FALSE
8351 Data type not allowed for output buffer FALSE
9.24 String operation instructions
Your control program can use the following string and character instructions to create
messages for operator display and process logs.
9.241 MAX_LEN (Maximum length of a character string)

Table 9- 47 Maximum length instruction

LAD / FBD SCL Description
AESRIET out := MAX_LEN (Maximum length of string) provides the maximum length value
Sm—ng MAX LEN(in) ; assigned to string IN at output OUT. If errors occur during processing of the
instruction, then an empty string length will be output.
—EM EHE = The String and WString data types contain two lengths: the first byte (or word)
It ouT

gives the maximum length and the second byte (or word) gives the current
length (this is the current number of valid characters).

e The maximum length of the character string is assigned for each String or
WString declaration in square brackets. The number of bytes occupied by a
String is 2 bytes greater than the maximum length. The number of words
occupied by a WString is 2 words greater than the maximum length.

e The current length represents the number of the characters actually used.
The current length must be less than or equal to the maximum length. The
current length is in bytes for a String and in words for a WString.

Use the MAX_LEN instruction to get the maximum length of the character
string and the LEN instruction to get the current length of a string.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 361

Extended instructions

9.2 String and character

Table 9-48 Data types for the parameters

Parameter and type Data type Description
IN IN String, WString Input string
ouT ouT Dint Maximum number of characters allowed for IN
string
9.24.2 LEN (Determine the length of a character string)

Table 9-49 Length instruction

LAD / FBD SCL Description
TER out := LEN(in); LEN (length) provides the current length of the string IN at output OUT. An
Sirrgg empty string has a length of zero.

-EN ENO -

{IN ouT |

Table 9- 50 Data types for the parameters

Parameter and type Data type Description
IN IN String, WString Input string
ouT ouT Int, DInt, Real, LReal Number of valid characters of IN string
Table 9- 51 ENO status
ENO Condition ouT
1 No invalid string condition Valid string length
0 Current length of IN exceeds maximum length of IN Current length is set to 0

Maximum length of IN does not fit within allocated memory range

Maximum length of IN is 255 (illegal length)

362

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character

9.24.3 CONCAT (Combine character strings)

Table 9- 52 Concatenate strings instruction

LAD / FBD SCL Description

out := CONCAT(inl, in2); CONCAT (concatenate strings) joins string parameters IN1 and
CONCAT . . .
Siting IN2 to form one string provided at OUT. After concatenation,
=EM ENO = String IN1 is the left part and String IN2 is the right part of the
1M1 our combined string.
Nz

Table 9- 53 Data types for the parameters

Parameter and type Data type Description

IN1 IN String, WString Input string 1

IN2 IN String, WString Input string 2

ouT ouT String, WString Combined string (string 1 + string 2)
Table 9- 54 ENO status

ENO Condition ouT

1 No errors detected Valid characters

0 Resulting string after concatenation is larger than maximum length of OUT | Resulting string characters are

string copied until the maximum length

of the OUT is reached

Current length of IN1 exceeds maximum length of IN1, current length of Current length is set to 0
IN2 exceeds maximum length of IN2, or current length of OUT exceeds
maximum length of OUT (invalid string)

Maximum length of IN1, IN2 or OUT does not fit within allocated memory
range

Maximum length of IN1 or IN2 is 255, or the maximum length of OUT is 0
or 255 (String data type)

Maximum length of IN1 or IN2 is 65534, or the maximum length of OUT is
0 or 65534 (WString data type)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 363

Extended instructions

9.2 String and character

9.24.4

LEFT, RIGHT, and MID (Read substrings in a character string) instructions

Table 9- 55 Left, right and middle substring operations

LAD / FBD SCL Description
o out := LEFT(in, L); LEFT (Left substring) provides a substring made of the first L charac-
g ters of string parameter IN.
b IEH” EE‘?{ r e IfLis greater than the current length of the IN string, then the entire
ki ' IN string is returned in OUT.
' e If an empty string is the input, then an empty string is returned in
OUT.
out := MID(in, L, p); MID (Middle substring) provides the middle part of a string. The middle
;‘:'.?u substring is L characters long and starts at character position P (inclu-
=EN END - sive)
N ouT If the sum of L and P exceeds the current length of the string parame-
L ter IN, then a substring is returned that starts at character position P
i and continues to the end of the IN string.
S RIEHT out := RIGHT(in, L); RIGHT (Right substring) provides the last L characters of a string.
Suing 1 e If L is greater than the current length of the IN string, then the entire
':ﬁ:l E:j? IN string is returned in parameter OUT.
{L [e If an empty string is the input, then an empty string is returned in
OUT.

Table 9- 56 Data types for the parameters

Parameter and type Data type Description
IN IN String, WString Input string
L IN Int Length of the substring to be created:
e LEFT uses the left-most characters number of characters in the
string
e RIGHT uses the right-most number of characters in the string
e MID uses the number of characters starting at position P within
the string
P IN Int MID only: Position of first substring character to be copied
P= 1, for the initial character position of the IN string
ouT ouT String, WString Output string
S7-1200 Programmable controller
364 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions

Table 9- 57 ENO status

9.2 String and character

ENO

Condition

ouT

No errors detected

Valid characters

e LorPislessthanorequalto0
e P is greater than maximum length of IN

e Current length of IN exceeds maximum length of IN, or current length
of OUT exceeds maximum length of OUT

e Maximum length of IN or OUT does not fit within allocated memory

e Maximum length of IN or OUT is 0 or 255 (String data type) or O or
65534 (WString data type)

Current length is setto 0

Substring length (L) to be copied is larger than maximum length of OUT
string.

Characters are copied until the
maximum length of OUT is
reached

MID only: L or P is less than or equal to 0

MID only: P is greater than maximum length of IN

Current length is setto 0

Current length of IN1 exceeds maximum length of IN1, or current length of
IN2 exceeds maximum length of IN2 (invalid string)

Maximum length of IN1, IN2 or OUT does not fit within allocated memory
range

Maximum length of IN1, IN2 or OUT is illegal length: 0 or 255 (String data
type) or 0 or 65534 (WString data type)

Current length is setto 0

9.245

DELETE (Delete characters in a character string)

Table 9- 58 Delete substring instruction

LAD / FBD SCL Description
GEETE out := DELETE(in, L, p); Deletes L characters from string IN. Character deletion starts at
Siring character position P (inclusive), and the remaining substring is
-EM END | provided at parameter OUT.
{IM
L e If L is equal to zero, then the input string is returned in OUT.
{P

e Ifthe sum of L and P is greater than the length of the input
string, then the string is deleted to the end.

Table 9- 59 Data types for the parameters

Parameter and type Data type Description
IN IN String, WString Input string
L IN Int Number of characters to be deleted
IN Int Position of the first character to be deleted: The first character of

the IN string is position number 1

ouT

ouT String, WString Output string

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

365

Extended instructions

9.2 String and character

Table 9- 60 ENO status

ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than current length of IN IN is copied to OUT with no char-

acters deleted

Resulting string after characters are deleted is larger than maximum length | Resulting string characters are

of OUT string copied until the maximum length
of OUT is reached
L is less than 0O, or P is less than or equal to 0 Current length is setto 0

Current length of IN exceeds maximum length of IN, or current length of
OUT exceeds maximum length of OUT

Maximum length of IN or OUT does not fit within allocated memory

Maximum length of IN or OUT is 0 or 255

9.246 INSERT (Insert characters in a character string)
Table 9- 61 Insert substring instruction

LAD / FBD SCL Description

S REERTT] out := INSERT(inl, in2, p); |Inserts string IN2 into string IN1. Insertion begins after the char-

Sking acter at position P.

= EN END -

{1 ouT |

{INz2

|p

Table 9-62 Data types for the parameters

Parameter and type

Data type

Description

IN1 IN String, WString Input string 1
IN2 IN String, WString Input string 2
P IN Int Last character position in string IN1 before the insertion point for
string IN2
The first character of string IN1 is position number 1.
ouT ouT String, WString Result string
S7-1200 Programmable controller
366 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

Table 9- 63 ENO status

9.2 String and character

ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than length of IN1 IN2 is concatenated with IN1 immediate-
ly following the last IN1 character
P is less than 0 Current length is set to 0
Resulting string after insertion is larger than maximum length of Resulting string characters are copied
OUT string until the maximum length of OUT is
reached
Current length of IN1 exceeds maximum length of IN1, current Current length is set to 0
length of IN2 exceeds maximum length of IN2, or current length of
OUT exceeds maximum length of OUT (invalid string)
Maximum length of IN1, IN2 or OUT does not fit within allocated
memory range
Maximum length of IN1 or IN2 is 255, or maximum length of OUT is
0 or 255 (String data type)
Maximum length of IN1 or IN2 is 65534, or maximum length of OUT
is 0 or 65534 (WString data type)
9.24.7 REPLACE (Replace characters in a character string)

Table 9- 64 Replace substring instruction

LAD / FBD SCL Description

............... out := REPLACE (Replaces L characters in the string parameter IN1. Replacement

REPLACE L . . .
Sliing inl:= string_in_, starts at string IN1 character position P (inclusive), with replace-

—EM Euni. in2:= string in_, ment characters coming from the string parameter IN2.

[M Outy L:= int_in _,

{IM2 - LT

i ‘ p:=_int_in);

{P

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

367

Extended instructions

9.2 String and character
Table 9- 65 Data types for the parameters
Parameter and type Data type Description
IN1 IN String, WString Input string
IN2 IN String, WString String of replacement characters
L IN Int Number of characters to replace
P IN Int Position of first character to be replaced
ouT ouT String, WString Result string

If parameter L is equal to zero, then the string IN2 is inserted at position P of string IN1

without deleting any characters from string IN1.

If P is equal to one, then the first L characters of string IN1 are replaced with string IN2

characters.
Table 9-66 ENO status
ENO Condition ouT

No errors detected

Valid characters

0 P is greater than length of IN1 IN2 is concatenated with IN1 immediate-

ly following the last IN1 character

P points within IN1, but fewer than L characters remain in IN1 IN2 replaces the end characters of IN1
beginning at position P

Resulting string after replacement is larger than maximum length of | Resulting string characters are copied

OUT string until the maximum length of OUT is
reached

Maximum length of IN1is O IN2 characters are copied to OUT

L is less than 0, or P is less than or equal to 0 Current length is set to 0

Current length of IN1 exceeds maximum length of IN1, current

length of IN2 exceeds maximum length of IN2, or current length of

OUT exceeds maximum length of OUT

Maximum length of IN1, IN2 or OUT does not fit within allocated

memory range

Maximum length of IN1 or IN2 is 255, or maximum length of OUT is

0 or 255 (String data type)

Maximum length of IN1 or IN2 is 65534, or maximum length of OUT

is 0 or 65534 (WString data type)

S7-1200 Programmable controller
368 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions

9.2 String and character
9.24.8 FIND (Find characters in a character string)
Table 9- 67 Find substring instruction
LAD / FBD SCL Description
= out := FIND(Provides the character position of the substring specified by IN2 within
Sting inl:=_string_in_, |the string IN1. The search starts on the left. The character position of
-EN END - in2:= string_in); |the first occurrence of IN2 string is returned at OUT. If the string IN2 is
1K1 ouT | not found in the string IN1, then zero is returned.
M2
Table 9- 68 Data types for the parameters
Parameter and type Data type Description
IN1 IN String, WString Search inside this string
IN2 IN String, WString Search for this string
ouT ouT Int Character position in string IN1 of the first search match
Table 9-69 ENO status
ENO Condition ouT
1 No errors detected Valid character position
0 IN2 is larger than IN1 Character position is set to 0

Current length of IN1 exceeds maximum length of IN1, or current length
of IN2 exceeds maximum length of IN2 (invalid string)

Maximum length of IN1 or IN2 does not fit within allocated memory
range

Maximum length of IN1 or IN2 is 255 (String data type) or 65535
(WString data type)

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 369

Extended instructions

9.2 String and character

9.2.5

9.25.1

Runtime information

Table 9- 70 GetSymbolName instruction

GetSymbolName (Read out a tag on the input parameter)

LAD / FBD SCL Description
GetsymbolName OUT := GetSymbolName (The GetSymbolName instruction retumns a
- EN END = variable:= parameter_in , | string corresponding to the name of a variable
ve riable out size:= dint in); from the block interface.

SIZe . . .
Your program can call the instruction multiple
times with different tags. The process value of
the tag is irrelevant.

The instruction returns the name read at the
OUT parameter.
Parameter
The following table shows the parameters of the GetSymbolName instruction:
Parameter Declaration Data type Memory area | Description
VARIABLE Input PARAMETER | Parameter Variable from the local block interface for which you
sections Input, | want a string value of the name returned
Output, InOut
SIZE Input DINT I,Q, M, D, L Limits the number of characters output at the OUT
parameter:
e SIZE > 0: GetSymbolName returns the first SIZE
characters of the name.
e SIZE = 0: GetSymbolName returns the entire
name.
e SIZE < 0: GetSymbolName returns the last SIZE
characters of the name.
ouT Return WSTRING ,Q, M, D, L Output of the tag name supplied by the input pa-
rameter
You specify the input parameters of the block interface at the VARIABLE parameter. Use
only an interface parameter for this parameter and not a PLC or data block tag.
To limit the length of the read tag name, use the SIZE parameter. If the instruction truncates
the name, it indicates the truncation by the characters "..." (Unicode character 16#2026)
appears at the end of the name. Note that this character has the length 1.
You can find additional information on valid data types under "Data types (Page 125)".
S7-1200 Programmable controller
370 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions

9.2 String and character

Example: Meaning of SIZE parameter

The following example illustrates the meaning of the SIZE parameter. The following tag
name is read from the block interface: "MyPLCTag" (The double quotes at the start and end
belong to the name.)

SIZE GetSymbolName returns Explanation

1 e First character of WSTRING:'

¢ |dentifier that the name was truncated: ...
e Last character of WSTRING:'

2 " e First character of WSTRING:'

e The first character of the name and identifier that the
name was truncated:"...

e Last character of WSTRING:'

3 "M...! e First character of WSTRING:'

e The first two characters of the name and identifier that
the name was truncated:"... "M...

e Last character of WSTRING:'

6 "MyPL...! e First character of WSTRING:'

e The first five characters of the name and identifier that
the name was truncated: "MyPL...

e Last character of WSTRING:'

0 "MyPLCTag" o First character of WSTRING:'
o All characters of the name: "MyPLCTag"
e Last character of WSTRING:'

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 371

Extended instructions

9.2 String and character

Example: Reading a symbol name

In the following example, you read out the name of a tag that is interconnected via the input
parameter of a block.

Create two tags in a global data block for storing the data.

My_gDB_SymName

Name Data type Start value
1 < = Static
2 . MySymMNAME WString S TRINGS
3 e symbolVALUE Byte 16542

Create an input parameter inputValue with the BYTE data type in the Level1 block. Call the
GetSymbolName instruction in the Level1 block. Interconnect the parameters of the
instruction as follows.

GetSymbolName

EN ENO
#inputvValue —lvariable

"My_gDB_
60 —fsiz Symlame”.
oUTI— MysymNAME

Interconnect the inputValue parameter of the Level1 block as follows.

WDEB1
“Levell_DB"
Y%FB1
“Levell”
EM END
Blse QUT =i ...

“hy_gDB_
SymMarme”.

symbolVALUE inputValue

The GetSymbolName instruction is executed in the Level1 block. Input parameter inputValue
of the Level1 block is examined for its interconnection using input parameter VARIABLE of
the instruction. In doing so, the symbolVALUE tag is read out and output as a character
string at output parameter OUT ("MySymNAME"). According to the value of input parameter
SIZE, the length of the character string is limited to 60 characters.

My_gDB_SymName

Mame Data type Start value Maonitar value
gl w Static
2 g . hyS yrn NAME Wstring WSTRINGS WSTRINGE"™ My _gDB_SymMame” symbolVALUE'
3 qaw symbolVALUE Byte 1e#42 16842

S7-1200 Programmable controller
372 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character
9.2.5.2 GetSymbolPath (Query composite global name of the input parameter assignment)
Table 9-71 GetSymbolPath instruction

LAD / FBD SCL Description
GetSymbolPath OUT := GetSymbolPath (The GetSymbolPath instruction reads the
-EN oy ENO - variable:= parameter_in , |composite global name of an input parameter
variable out size:=_dint _in); at the local interface of a block (FB or FC). The
size name consists of the storage path and the tag
name.

Your program can call the instruction multiple
times with different tags. The process value of
the tag is irrelevant.

The instruction returns the name read at the
OUT parameter.

Parameter
The following table shows the parameters of the GetSymbolPath instruction:
Parameter Declaration Data type Memory area Description
VARIABLE Input PARAMETER | Parameter sections | Selection of the local interface to which you
Input, Output, InOut | want to read the global name of the input
parameter supply.
SIZE Input DINT I, Q, M, D, L orcon- |Limits the number of characters output at the
stant OUT parameter.
e SIZE > 0: GetSymbolPath returns the first
SIZE characters of the name.
e SIZE = 0: GetSymbolPath returns the
entire name.
e SIZE < 0: GetSymbolPath returns the last
SIZE characters of the name.
ouT Output WSTRING ,Q, M, D, L Output of the tag name of the input parame-
ters supply.

You can find additional information on valid data types under "Data types (Page 125)".

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 373

Extended instructions

9.2 String and character

Usage
Note the following tips on using the GetSymbolPath instruction:

e Specify the block interface through which the name of the input tag is read at the
VARIABLE parameter of the instruction:

— If a data block tag supplies the input parameter, GetSymbolPath outputs the name of
the DB, contained structures and the name of the tag.

— If a PLC tag supplies the input parameters GetSymbolPath outputs the name of the
PLC tag.

— If a constant supplies the input parameter, GetSymbolPath outputs the constant value.

e To limit the length of the read tag name, use the SIZE parameter. If the name has been
truncated, this is indicated by the character "..." (Unicode character 16#2026) at the end
of the name. Note that this character has the length 1.

Example: Meaning of the SIZE parameter

The following example illustrates the meaning of the SIZE parameter. GetSymbolPath has
read out the following tag name is read out from the block interface: "MyPLCTag" (The
double quotes at the start and end belong to the name.)

SIZE GetSymbolPath returns Explanation

1 e First character of WSTRING:'

¢ Identifier that the name was truncated: ...
e Last character of WSTRING:'

2 " e First character of WSTRING:'

e The first character of the name and identifier that the
name was truncated:"...

e Last character of WSTRING:'

3 "M...! e First character of WSTRING:'

e The first two characters of the name and identifier that
the name was truncated:"... "M...

e Last character of WSTRING:'

6 “"MyPL..." e First character of WSTRING:'

e The first five characters of the name and identifier that
the name was truncated: "MyPL...

e Last character of WSTRING:'

0 "MyPLCTag" e First character of WSTRING:'
e All characters of the name: "MyPLCTag"
e Last character of WSTRING:'

S7-1200 Programmable controller
374 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

Example: Calling GetSymbolPath over mutiple block call levels

9.2 String and character

The following example shows the use of GetSymbolPath over several call levels:

e QOrganization block OB1 calls the FB_Level_1 block, which in turn calls the FB_Level_2

block.

e The FB_Level_2 block executes GetSymbolPath to read the path of the parameter at the
REQ2 interface.

e Since the REQ1 interface supplies REQ2, the instruction determines the path of the input
parameter of REQ1.

o The MyStarterBit tag is the REQ1 input parameter. The bit is located in the MySTRUCT
structure in the MyDatablock data block.

GetSymbolPath reads this information and outputs the path
("MyDataBlock".MySTRUCT.MyStarterBit) at the OUT parameter.

OB1

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

FB_Level_1
EN ENO b
“MyDataBlock“.MySTRUCT. w «
MyStarterBit™ | REQ1 Output_1}—"Tag_3
“Tag_1“— Input_1
“Tag_2“— Input_2
|
v
FB_Level_1
FB_Level_2
EN ENO b
#REQ1—]REQ2 Output_1 }—"Tag_6"
“Tag_4“— Input_1
“Tag_5"—] Input_2
1
FB_Level_2

#REQ2 —

0—

GetSymbolPath
EN ENO

variable

size
ouT]

WSTRING#'

[MySTRUCT.

MyStarterBit

“MyDataBlock".

375

Extended instructions

9.2 String and character

9.2.5.3

GetlnstanceName (Read out name of the block instance)

Table 9- 72 GetlnstanceName instruction

LAD / FBD SCL Description
c OUT := GetInstanceName (You can use the GetlnstanceName instruction
etinstanceName)
- EN ENO - size:= dint in); to read the name of the instance data block
size out within a function block.
Parameter
The following table shows the parameters of the GetinstanceName instruction:
Parameter Declaration Data type Memory area Description
SIZE Input DINT ,Q, M, D, Lor Limits the number of characters output at the OUT
constant parameter.
e SIZE > 0: GetlnstanceName returns the first SIZE
characters of the name.
e SIZE = 0: GetInstanceName returns the entire
name.
e SIZE < 0: GetlnstanceName returns the last SIZE
characters of the name.
ouT Output WSTRING ,Q,M,D, L Read name of the instance data block

376

You can find additional information on valid data types under "Data types|(Page 125)".

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character

Example: Meaning of SIZE parameter

To limit the length of the read instance name, use the SIZE parameter. If the instruction has
truncated the name, it indicates the truncation by the character "..." (Unicode character
16#2026) at the end of the name. Note that this character has the length 1.

The following example illustrates the meaning of the SIZE parameter. GetinstanceName has
read out the following instance name from the block interface: "Level1_DB" (The double
quotes at the start and end belong to the name.)

SIZE GetSymbolPath returns Explanation

1 e First character of WSTRING:'

o |dentifier that the name was truncated: ...
e Last character of WSTRING:'

2 " e First character of WSTRING:'

e The first character of the name and identifier that the
name was truncated:"...

e Last character of WSTRING:'

3 "L e First character of WSTRING:'

e The first two characters of the name and identifier that
the name was truncated:"... "L...

e Last character of WSTRING:'

6 "Leve...' e First character of WSTRING:'

e The first five characters of the name and identifier that
the name was truncated: "Leve...

e Last character of WSTRING:'

0 "Level1_DB" e First character of WSTRING:'
e All characters of the name: "Level1_DB"
e Last character of WSTRING:'

GetlnstanceName writes out the name of the instance data block to the OUT parameter. The
instruction truncates the name if the name of the instance data block is longer than the
maximum length of WSTRING.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 377

Extended instructions

9.2 String and character

Example: Reading the name of an instance data block

378

The following example shows how to read out the name of an instance data block.

Create two tags in a global data block for storing the data.

Define the parameters of the instruction as follows.

My_gDB_GetinstanceName

Marme Datentyp
1 |40 « Static
Z |4qQ m limitSIZE Dint
3 |4 m outputinsMame Wetring

Startwert

The Level1_gin block executes the GetinstanceName instruction, which determines the
associated instance data block of the Level1_gin block and outputs the name as a character
string at output parameter OUT (outputinstName). According to the value 0 of parameter
SIZE (limitSIZE), the length of the character string is unlimited.

GetinstanceName

EN

“hhy_gDE_
GetinstanceMame
* limitsIZE =

ENO

QuUT

My_gDB_GetinstanceName

Mame Data type
1 <0 -« Static
2 g0 m limitSIZE Dint
3 qw outputinstMame Wstring

“hhy_gDB_
GetinstanceMame

outputinstMame

Start value Maonitor value

WSTRING# ' "Level1_DB™

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2 String and character

9.2.54 GetlnstancePath (Query composite global name of the block instance)
Table 9- 73 GetlnstancePath instruction

LAD / FBD SCL Description

e OUT := GetInstancePath (You use the GetlnstancePath instruction to
etinstancePath
-EN ENO - size:= dint in); read the composed global name of the block
size out instance within a function block. The com-

posed global name of the block instance is the
path of the complete call hierarchy when the
program calls multiple instances.

Parameter
The following table shows the parameters of the GetinstancePath instruction:
Parameter Declaration Data type Memory area Description
SIZE Input DINT I,Q, M, D, L orcon- |Limits the number of characters output at the

stant OUT parameter.

e SIZE > 0: GetlnstancePath returns the first
SIZE characters of the name.

e SIZE = 0: GelnstancePath returns the
entire name.

e SIZE < 0: GetlnstancePath returns the last
SIZE characters of the name.

ouT Output WSTRING ,Q, M, D, L Read global name of the block instance.

If the global name of the block instance is
longer than the maximum length of WSTRING
(254 characters), GetlnstancePath truncates
the name.

You can find additional information on valid data types under "Data types|(Page 125)".

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 379

Extended instructions

9.2 String and character

Example: Calling GetlnstancePath to get the path of a multi-instance FB call

In the following example, the FB_Level_3 function block calls the GetlnstancePath
instruction.

e The FB_Level_3 function block stores its data in the calling FB_Level_2 function block.

e The FB_Level_2 function block in turn stores its data in the calling FB_Level_1 function
block.

® The FB_Level_1 function block in turn stores its data in its instance data block
IDB_LEVEL_1. Through the use of multi-instances, the instance data block of FB_Level_1
contains all data of the three function blocks.

IDB_LEVEL 1 FB_Level_1 FB_Level_2 FB_Level_3

Input 5
Output Maind Static tatic Static
InCut Level 2 lnstance Leval 3 Instance

Static Static

Level 2 Instance Level 3_lnstance
Input |_DB_Level 1

Output FB_Level_1

InOut =3 fir- FB_Level 2
Static

Level 3_Instance k I —
Input FB_xyz FB_abc
Output ouTH-
InChut
Static

FE Leval 3 GatlnstancePath

FC_xyz FG_abe

The GetlnstancePath instruction returns the following values for this example, depending on
the value of the SIZE parameter:

SIZE GetlnstancePath returns Explanation

1 « First character of WSTRING:'

¢ Identifier that the name was truncated: ...
e Last character of WSTRING:'

2 e First character of WSTRING:'

e The first character of the name and identifier that the
name was truncated:"...

e Last character of WSTRING:'

3 " e First character of WSTRING:'

e The first two characters of the name and identifier that
the name was truncated:"... "l...

e Last character of WSTRING:'

S7-1200 Programmable controller
380 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.2.5.5

9.2 String and character

SIZE

GetlnstancePath returns

Explanation

"IDB_..."

First character of WSTRING:'

The first five characters of the name and identifier that
the name was truncated: "IDB_...

Last character of WSTRING:'

"IDB_LEVEL_1"Level_2_ |
Instance.Level_3_Instance' |

First character of WSTRING:'

All characters of the name:
"IDB_LEVEL_1".Level_2_Instance.Level_3_Instance

Last character of WSTRING:'

Note

Use of GetinstancePath in function blocks with single instance

If the function block in which you call GetlnstancePath saves data in its own instance data
block, GetlnstancePath outputs the name of the single instance as the global name. The
result at parameter OUT corresponds in this case to the|GetinstanceName (Page|376)
instruction.

GetBlockName (Read out name of the block)

Table 9- 74 GetBlockName instruction

LAD / FBD SCL Description
T RET VAL := GetBlockName (You use the GetBlockName instruction to read
- EN ENO - size:= dint_in); the name of the block in which the instruction
5IZE RET_VAL is called.
Parameter
The following table shows the parameters of the GetBlockName instruction:
Parameter Declaration Data type Memory area Description
SIZE Input UINT I,Q, M, D, Lor Limits the number of characters output at the
constant RET_VAL parameter.
e SIZE > 0: GetBlockName returns the first SIZE
characters of the name.
e SIZE = 0: GetBlockName returns the entire name.
e SIZE < 0: GetBlockName returns the last SIZE
characters of the name.
RET_VAL Output WSTRING |1,Q, M, D, L Read name of the instance data block

You can find additional information on valid data types under "Data types|(Page 125)".

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

381

Extended instructions

9.2 String and character

Example: Meaning of the SIZE parameter

To limit the length of the block name to a certain number of characters, specify the maximum
length at the SIZE parameter. If GetBlockName truncates the name, it indicates the
truncation by the character "..." (Unicode character 16#2026) at the end of the name. Note
that this character has the length 1.

The following example illustrates the meaning of the SIZE parameter. GetBlockName has
read out the following block name: Level1_gbn (The double quotes at the start and end
belong to the name.)

SIZE GetBlockName returns Explanation

1 e First character of WSTRING:'

¢ Identifier that the name was truncated: ...
e Last character of WSTRING:'

2 " e First character of WSTRING:'

e The first character of the name and identifier that the
name was truncated:"...

e Last character of WSTRING:'

3 "L e First character of WSTRING:'

e The first two characters of the name and identifier that
the name was truncated:"... "L...

e Last character of WSTRING:'

6 "Leve...' e First character of WSTRING:'

e The first five characters of the name and identifier that
the name was truncated: "Leve...

e Last character of WSTRING:'

0 "Level1_gbn e First character of WSTRING:'
e All characters of the name: "Level1_gbn"
e Last character of WSTRING:'

GetBlockName writes the name of the block at the RET_VAL parameter. If the name of the
block is longer than the maximum length of WSTRING, it truncates the name.

S7-1200 Programmable controller
382 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

Example: Reading a block name

9.2 String and character

The following example shows how to read out a block name.

1. Create two tags in a global data block for storing the data.

My_gDB_GetBlockName

Name Data type
1 <01 = Stafic
Z O m limitSIZE Dint
3 qmn outputBlockMame Wstring

Start value

2. Define the parameters of the instruction as follows:

GetBlockName
EM
“My_gDB_
GetBlockMame®.
limitSIZE S|ZE

EMNO

RET_VAL

“hy_gDBE_
GetBlockMame®.
outputBlockName

The Level1_gbn block executes the GetBlockName instruction. GetBlockName reads out the
name of the Level1_gbn block and outputs the name as a character string at output
parameter RET_VAL(outputBlockName). Because the SIZE parameter is O (limitSIZE), the

length of the character string is unlimited.

My_gDB_GetBlockName

Mame Data type
1 <0 - Static
2 s limitsIZE | Dint
3 4. outputBlockName Wstring

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

Start value

Monitor value

o

STRING# WSTRING# " Levell_gbn™

383

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3 Distributed /0O (PROFINET, PROFIBUS, or AS-i)

9.31 Distributed 1/O Instructions
The following Distributed I/O instructions can be used with PROFINET, PROFIBUS, or AS-i:

® RDREC instruction|(Page 385): Reads a data record with the number INDEX from a
module or device.

¢ WRREC instruction|(Page 385): Transfers a data record with the number INDEX to a
module or device defined by ID.

® GETIO instruction |(Page 388): Consistently reads out all inputs of a DP standard slave /
PROFINET IO device.

e SETIO instruction (Page 389): Consistently transfers data from the source range defined
by the OUTPUTS parameter to the addressed DP standard slave / PROFINET 10 device.

® GETIO_PART instruction (Page| 390): Consistently reads out a related part of the inputs
of an 10 module.

e SETIO_PART instruction|(Page|392): Consistently writes data from the source area
spanned by the OUTPUTS parameter to the outputs of an 10 module.

® RALRM instruction|(Page 394): Allows you to receive an interrupt with all corresponding
information from a module or device and supply this information to its output parameters.

e DPRD_DAT instruction (Page|408): Allows you to read consistent data areas greater than
64 bytes from a module or device with the DPRD_DAT instruction.

e DPWR_DAT instruction|(Page 408): Allows you to write consistent data areas greater
than 64 bytes to a module or device with the DPWR_DAT instruction.

The D_ACT_DP instruction|(Page|398) allows you to disable and enable configured
PROFINET IO devices in a targeted manner. You can also determine whether each
assigned PROFINET IO device is currently activated or deactivated.

Note

Note: You can only use the D_ACT_DP instruction with PROFINET IO devices. You cannot
use the instruction with PROFIBUS DP slaves.

The DPNRM_DG instruction|(Page|416) allows you to read the current diagnostic data of a
DP slave in the format specified by EN 50 170 Volume 2, PROFIBUS.

Note
You can only use the DPNRM_DG instruction with PROFIBUS.

S7-1200 Programmable controller
384 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3.2

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

RDREC and WRREC (Read/write data record)

You can use the RDREC (Read data record) and WRREC (Write data record) instructions
with PROFINET, PROFIBUS, and AS-i.

Table 9-75 RDREC and WRREC instructions

LAD / FBD SCL Description
"MDREC DE" "RDREC_DB" (Use the RDREC instruction to read a data
Pr req:= bool in , record with the number INDEX from the
\ariant ID:= word in_, component addressed by the ID, such as
- — index:= dint in_, a central rack or a distributed component
—rEQ L mlen:= uint in , (PROFIBUS DP or PROFINET 10). As-
D BLSY Ly valid=; booI o;t , sign t.he maximum number of bytes to
INDEX ERROR s busy=> ;ool ;ut 7 read in MLEN. The selected length of the
MLEN STATUS error:; booI ouz target area RECORD should have at
- - = least the length of MLEN bytes.
RECORD LER status=>_dword out_,
len=> uint_out_,
rec-
ord:= variant inout);
"WRREC DE" "WRREC_DB" (Use the WRREC instruction to transfer a
. req:= bool in , data RECORD with the record number
Uint to Dint ID:= word in_, INDEX to a DP slave/PROFINET IO de-
= — index:= dint in_, vice component addressed by ID, such as
—RED vl len:= uint in , a module in the central rack or a distrib-
D BLSY Ly done=; booI o;t , uted component (PROFIBUS DP or
IMDEX ERROR — busy=> bool_out_, PROFINET 10).
STATUS error=> bool out , Assign the byte length of the data record
RECORD status=> dword out , to be transmitted. The selected length of

rec-
ord:=_variant_inout);

the source area RECORD should, there-
fore, have at least the length of LEN
bytes.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL examples, "RDREC_DB" and "WRREC_DB" are the names of the instance DBs.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

385

Extended instructions
9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Table 9-76 RDREC and WRREC data types for the parameters

Parameter and type Data type Description
REQ IN Bool REQ = 1: Transfer data record
ID IN HW_IO (Word) Logical address of the DP slave/PROFINET 10 component

(module or submodule):

e For an output module, bit 15 must be set (for example, for
address 5: ID:= DW#16#8005).

e For a combination module, the smaller of the two addresses
should be specified.

Note: In V3.0, the device ID can be determined in one of two

ways:

e By making the following "Network view" selections:
— Device (gray box)
— "Properties" of the device

"Hardware identifier"
Note: Not all devices display their Hardware identifiers,
however.

e By making the following "Project tree" menu selections:
- PLC tags
— Default tag table
— System constants tab

All configured device Hardware identifiers are displayed.
Note: In V4.0, the device ID (hardware identifier) for the interface
module is determined by going to the tag table and locating the
"Device Name [HEAD]" parameter under System Constants.

INDEX IN Byte, Word, USiInt, Data record number
Ulint, Sint, Int, DInt
MLEN IN Byte, USInt, Ulnt Maximum length in bytes of the data record information to be
fetched (RDREC)
VALID ouT Bool New data record was received and valid (RDREC). The VALID

bit is TRUE for one scan, after the last request was completed
with no error.

DONE ouT Bool Data record was transferred (WRREC). The DONE bit is TRUE
for one scan, after the last request was completed with no error.
BUSY ouT Bool e BUSY = 1: The read (RDREC) or write (WRREC) process is

not yet terminated.
e BUSY = 0: Data record transmission is completed.
ERROR ouT Bool ERROR = 1: A read (RDREC) or write (WRREC) error has oc-
curred. The ERROR bit is TRUE for one scan, after the last
request was terminated with an error. The error code value at

the STATUS parameter is valid only during the single scan
where ERROR = TRUE.

STATUS ouT DWord Block status|(Page|/403) or|error information (Page 553)

S7-1200 Programmable controller
386 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameter and type Data type Description
LEN OUT (RDREC) | Ulnt e Length of the fetched data record information (RDREC)
IN (WRREC) e Maximum byte length of the data record to be transferred
(WRREC)
RECORD |IN_OUT Variant e Target area for the fetched data record (RDREC)

e Data record (WRREC)

The RDREC and WRREC instructions operate asynchronously, that is, processing covers
multiple instruction calls. Start the job by calling RDREC or WRREC with REQ = 1.

The job status is displayed via output parameter BUSY and the two central bytes of output
parameter STATUS. The transfer of the data record is complete when the output parameter
BUSY has been set to FALSE

A value of TRUE (only for one scan) on the output parameter VALID (RDREC) or DONE
(WRREC) verifies that the data record has been successfully transferred into the target area
RECORD (RDREC) or to the target device (WRREC). In the case of the RDREC, the output
parameter LEN contains the length of the fetched data in bytes.

The output parameter ERROR (only for one scan when ERROR = TRUE) indicates that a
data record transmission error has occurred. In this case, the output parameter STATUS
(only for the one scan when ERROR = TRUE) contains the error information.

Data records are defined by the hardware device manufacturer. Refer to the hardware
manufacturer's device documentation for details about a data record.

You can have up to four RDREC instructions and four WRREC instructions in use at the
same time.

Note

If you configure a DPV1 slave with a GSD file (GSD rev. 3 and higher) and the DP interface
of the DP master is set to "S7 compatible", then you might not read any data records from
the I/0O modules in the user program with "RDREC" or write to the 1/0O modules with
"WRREC". In this case, the DP master addresses the wrong slot (configured slot + 3).

Remedy: set the interface of the DP master to "DPV1".

Note

The interfaces of the "RDREC" and "WRREC" instructions are identical to the "RDREC" and
"WRREC" FBs defined in "PROFIBUS Guideline PROFIBUS Communication and Proxy
Function Blocks according to IEC 61131-3".

Note

If you use "RDREC" or "WRREC" to read or write a data record for PROFINET IO, then the
CPU interprets negative values in the INDEX, MLEN, and LEN parameters as unsigned 16-
bit integers.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 387

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.3

GETIO (Read process image)

You use the instruction "GETIO" to consistently read inputs of modules or submodules of
DP slaves and PROFINET IO devices. The instruction "GETIO" calls the instruction
'"DPRD_DAT (Page|408)". If there is no error during the data transmission, the data that has
been read is entered in the destination area indicated by INPUTS.

Table 9- 77 GETIO (Read process image) instruction

LAD / FBD SCL Description
- "GETIO_DB" (Use the instruction "GETIO" to con-
“GETIO DB id:= uint_in , sistently read out all inputs of a
=T status=> dword out_, DP standard slave /
—en Eno - len=> int out_, PROFINET 10O device.
D STATUS inputs:= variant_inout);
INPUTS LEN

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "GETIO_DB" is the name of the instance DB.

The destination area must have a length that is greater than or equal to the length of the
selected component.

If you read from a DP standard slave with a modular configuration or with several DP
identifiers, you only access the data of one component / DP identifier at the configured start
address with a "GETIO" call.

Parameters
The following table shows the parameters of the "GETIO" instruction:
Parameter Declaration Data type Description
ID IN HW_SUBMOD | Hardware ID of the DP standard slave / PROFINET IO device
ULE
STATUS? ouT DWord Contains the error information of 'DPRD_DAT |(Page 408)" in the form
DW#16#40xxxx00
LEN ouT Int Amount of data read in bytes
INPUTS IN_OUT Variant Destination area for the read data: The destination area must have a

length that is greater than or equal to the length of the selected
DP standard slave / PROFINET IO device.

You can use the following data types:

e System data types and array of system data types: BYTE, CHAR,
SINT, USINT, WORD, INT, UINT, DWORD, DINT, UDINT, REAL,
LREAL, LWORD, LINT, ULINT

e User Defined Types (UDT)
e Structures (STRUCT), but only in non-optimized data blocks (DB)

1 When displaying the "GETIO" error codes, use the DWord data type.

388

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3.4

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

SETIO (Transfer process image)

You use the instruction "SETIO" to consistently transfer data from the source range defined
by the OUTPUTS parameter to the addressed modules or submodules of DP slaves and
PROFINET IO devices. If you have configured the relevant address area of the

DP standard slave / PROFINET IO device as a consistent range in a process image, the
data is transferred to the process image. "SETIO" calls the 'DPWR_DAT (Page 408)"
instruction during this transfer.

Table 9- 78 SETIO (Read process image) instruction

LAD / FBD SCL Description
- "SETIO_DB" (Use the instruction "SETIO" to con-
“<ETIO DE" id:= uint_in , sistently transfer data from the
e status=>_dword out_, source range defined by the param-
—len ENG — outputs:= variant inout); eter OUTPUTS to the addressed
DP standard slave /
D STATUS PROFINET IO device.
OUTPUTS

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "SETIO_DB" is the name of the instance DB.

The source range must have a length that is greater than or equal to the length of the
selected component.

In the case of a DP standard slave / PROFINET 10O device with modular configuration or with
several DP identifiers, you can only access one DP identifier / component per "SETIO" call.

Parameters
The following table shows the parameters of the "SETIO" instruction:
Parameter Declaration Data type Description
ID IN HW_SUBMOD | Hardware ID of the DP standard slave / PROFINET IO device
ULE
STATUS! ouT DWord Contains the error information of 'DPWR_DAT |(Page 408)" in the form
DW#16#40xxxx00
OUTPUTS IN_OUT Variant Source range for the data to be written: The source range must have a

length that is greater than or equal to the length of the selected DP stand-
ard slave / PROFINET IO device.

You can use the following data types:

e System data types and array of system data types: BYTE, CHAR,
SINT, USINT, WORD, INT, UINT, DWORD, DINT, UDINT, REAL,
LREAL, LWORD, LINT, ULINT

e User Defined Types (UDT)
e Structures (STRUCT), but only in non-optimized data blocks (DB)

' When displaying the "SETIO"error codes, use the DWord data type.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

389

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.5 GETIO_PART (Read process image area)

You use the instruction "GETIO_PART" to consistently read a related part of the inputs of
modules or submodules of DP slaves and PROFINET IO devices. GETIO_PART calls the
instruction "{DPRD_DAT (Page 408)".

Table 9-79 GETIO_PART (Read process image area) instruction

LAD / FBD

SCL

Description

WDB1

"GETIO_FART_DE"

GETIO_PART
—EN

ID

OFFSET

LEN

INPUTS

EMNO
STATUS
ERROR

"GETIO_PART DB" (
id:= uint_in_,
offset:=_int_in ,
len:=_int_in ,
status=>_dword out_,
error=> bool out_,
inputs:= variant_inout);

Use the instruction GETIO_PART to
consistently read out a related part of
the inputs of an 10 module.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "GETIO_PART_DB" is the name of the instance DB.

Use the ID input parameter to select the IO module by means of the hardware ID.

Use the OFFSET and LEN parameters to specify the portion of the process image area to be
read. If the input area spanned by OFFSET and LEN is not completely covered by the
module, the block returns the error code DW#16#4080B700.

The length of the destination area must be larger than or equal to the amount of bytes to be
read:

390

If there is no error during the data transmission, ERROR receives the value FALSE. The
data that is read is written to the destination area defined at the INPUTS parameter.

If there is an error during the data transmission, ERROR receives the value TRUE. The
STATUS parameter receives the error information from DPRD_DAT.

If the destination area is greater than LEN, the instruction writes to the first LEN bytes of
the destination area. ERROR receives the value FALSE.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameters
The following table shows the parameters of the GETIO_PART instruction:
Parameter Declaration Data type Description
ID IN HW_SUBMO | Hardware identifier of the module
DULE

OFFSET IN Int Number of the first byte to be read in the process image for the component
(smallest possible value: 0)

LEN IN Int Number of bytes to be read

STATUS! ouT DWord Contains the error information of DPRD_DAT |(Page 408) in the form
DW#16#40xxxx00, if ERROR = TRUE

ERROR ouT Bool Error display: ERROR = TRUE if an error occurs when|DPRD_DAT
(Page|408) is called

INPUTS IN_OUT Variant Destination area for read data: If the destination area is greater than LEN,

the instruction writes to the first LEN bytes of the destination area.
You can use the following data types:

e System data types and array of system data types: BYTE, CHAR,
SINT, USINT, WORD, INT, UINT, DWORD, DINT, UDINT, REAL,
LREAL, LWORD, LINT, ULINT

e User Defined Types (UDT)
e Structures (STRUCT), but only in non-optimized data blocks (DB)

T When displaying the GETIO_PART error codes, use the DWord data type.

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

391

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.6 SETIO_PART (Transfer process image area)

You can use the "SETIO_PART" instruction to consistently write data from the source area
spanned by OUTPUTS to the outputs of modules or submodules of DP slaves and
PROFINET IO devices. SETIO_PART calls the instruction "{DPWR_DAT |(Page 408)".

Table 9- 80 SETIO_PART (Transfer process image area) instruction

LAD / FBD SCL Description
- "SETIO_PART DB" (Use the instruction SETIO_PART to
*SETIO PART DB" id:= uint_in_, consistently write data from the
T offset:= int_in_, source area spanned by OUTPUTS
—en - Enob— len:= int in_, to the outputs of an 10 module.
D STATUS status=>_dword out_,
OFFSET ERROR|— error=> bool out_,
LEN outputs:=_variant_inout)’
OUTPUTS

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example,

"SETIO_PART_DB" is the name of the instance DB.

With the input parameter ID, you select the I1/0O module based on the hardware identified.

With the parameters OFFSET and LEN, you assign the portion of the process image area to
be written for the component addressed by ID. If the output area spanned by OFFSET and
LEN is not completely covered by the module, the block returns the error code
DW#16#4080B700.

The length of the destination area must be larger than or equal to the amount of bytes to be
read:

392

If there is no error during the data transmission, ERROR receives the value FALSE.

If there is an error during the data transmission, ERROR receives the value TRUE, and
STATUS receives the error information of DPWR_DAT.

If the source area is greater than LEN, the instruction transfers the first LEN bytes from
OUTPUTS. ERROR receives the value FALSE.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameters
The following table shows the parameters of the SETIO_PART instruction:
Parameter Declaration Data type Description
ID IN HW_SUBMO | Hardware identifier of the IO module
DULE
OFFSET IN Int Number of the first byte to be written in the process image for the compo-
nent (smallest possible value: 0)
LEN IN Int Number of bytes to be written
STATUS! ouT DWord Contains the error information of DPWR_DAT (Page 408) in the form
DW#16#40xxxx00, if ERROR = TRUE
ERROR ouT Bool Error display: ERROR = TRUE if an error occurs when|DPWR_DAT
(Page|408) is called
OUTPUTS IN_OUT Variant Source range for the data to be written: If the source area is greater than

LEN, the first LEN bytes are transferred from OUTPUTS.
You can use the following data types:

e System data types and array of system data types: BYTE, CHAR,
SINT, USINT, WORD, INT, UINT, DWORD, DINT, UDINT, REAL,
LREAL, LWORD, LINT, ULINT

e User Defined Types (UDT)
e Structures (STRUCT), but only in non-optimized data blocks (DB)

1 When displaying the SETIO_PART error codes, use the DWord data type.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 393

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.7 RALRM (Receive interrupt)
You can use the RALRM (Read alarm) instruction with PROFINET and PROFIBUS.
Table 9- 81 RALRM instruction
LAD / FBD SCL Description
RALAM_DE "RALRM DB" (Use the RALRM (read alarm) instruction to read diagnostic
R mode:=_int_in_, interrupt information from PROFIBUS or PROFINET I/O mod-
MODE NEWH f ID:= word in_, ules/devices.
i mlen:= uint_in_, The information in the output parameters contains the start
TNFD LEN new=> bool out_, information of the called OB as well as information of the inter-
L rupt source.

status=>_dword out_,
ID=> word out_,
len=> uint_out_,

tinfo:= variant inout , lowing Diagnostic OB interrupts are supported: Status, Update,
ainfo:= variant inout); Profile, Diagnostic error interrupt, Pull or plug of modules, Rack

Call RALRM in an interrupt OB to return information regarding
the event(s) that caused the interrupt. In the S7-1200. The fol-

or station failure.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "RALRM_DB" is the name of the instance DB.

Table 9- 82 Data types for the parameters

Parameter and type

Data type

Description

MODE

IN

Byte, USInt, Sint, Int

Operating mode

F_ID

IN

HW_IO (Word)

Logical start address of the component (module) from which interrupts
are to be received

Note: The device ID can be determined in one of two ways:
e By making the following "Network view" selections:

— Device (gray box)

— "Properties" of the device

— "Hardware identifier"
Note: Not all devices display their Hardware identifiers.

e By making the following "Project tree" menu selections:
PLC tags
Default tag table

System constants tab

All configured device Hardware identifiers are displayed.

MLEN

Byte, USInt, Ulnt

Maximum length in bytes of the data interrupt information to be re-
ceived. MLEN of 0 will allow receipt of as much data interrupt infor-
mation as is available in the AINFO Target Area.

NEW

ouT

Bool

A new interrupt was received.

STATUS

ouT

DWord

Status of the RALRM instruction. Refer to/"STATUS parameter for
RDREC, WRREC, and RALRM" (Page 403) for more information.

394

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameter and type Data type Description

ID ouT HW_IO (Word) Hardware identifier of the /0O module that caused the diagnostic inter-
rupt
Note: Refer to the F_ID parameter for an explanation of how to deter-
mine the device ID.

LEN ouT DWord, Ulnt, UDInt, | Length of the received AINFO interrupt information

Dint, Real, LReal

TINFO IN_OUT Variant Task information: Target range for OB start and management infor-
mation. The TINFO length is always 32 bytes.

AINFO IN_OUT Variant Interrupt information: Target area for header information and additional

interrupt information. For AINFO, provide a length of at least the MLEN
bytes, if MLEN is greater than 0. The AINFO length is variable.

Note

If you call "RALRM" in an OB whose start event is not an I/O interrupt, the instruction will
provide correspondingly reduced information in its outputs.

Make sure to use different instance DBs when you call "RALRM" in different OBs. If you
evaluate data from an "RALRM" call outside of the associated interrupt OB, use a separate
instance DB per OB start event.

Note

The interface of the "RALRM" instruction is identical to the "RALRM" FB defined in
"PROFIBUS Guideline PROFIBUS Communication and Proxy Function Blocks according to
IEC 61131-3".

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

395

Extended instructions
9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Calling RALRM
You can call the RALRM instruction in three different operating modes (MODE).

Table 9- 83 RALRM instruction operating modes

MODE Description

0 o |D contains the hardware identifier of the 1/0 module that triggered the interrupt.
e Output parameter NEW is set to TRUE.

e LEN produces an output of 0.

e AINFO and TINFO are not updated with any information.

1 e ID contains the hardware identifier of the I/O module that triggered the interrupt.
o Output parameter NEW is set to TRUE.

e LEN produces an output of the amount in bytes of AINFO data that is returned.
e AINFO and TINFO are updated with interrupt-related information.

2 If the hardware identifier assigned to input parameter F_ID has triggered the interrupt then:

¢ ID contains the hardware identifier of the I/O module that triggered the interrupt. Should be the same
as the value at F_ID.

e Output parameter NEW is set to TRUE.
e LEN produces an output of the amount in bytes of AINFO data that is returned.
e AINFO and TINFO are updated with interrupt-related information.

Note

If you assign a destination area for TINFO or AINFO that is too short, RALRM cannot return
the full information.

MLEN can limit the amount of AINFO data that is returned.

Refer to the AINFO parameters and TINFO parameters of the online information system of
STEP 7 for information on how to interpret the TINFO and AINFO data.

S7-1200 Programmable controller
396 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions
9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Tinfo organization block data

The table below shows how the TInfo data is arranged for the RALRM instruction:

Same for OBs: Status, Update, Profile, 0 | SI_Format | OB_Class OB_Nr
Diagnostic error interrupt, Pull or plug of
modules, Rack or station failure
4 LADDR
TI_Submodule - OBs: Status, Update, 4 Slot
Profile
8 Specifier 0
TI_Diagnosticlnterrupt - OB: Diagnostic 4 10_State
error interrupt
8 Channel MultiError 0
TI_PlugPullModule - OB: Pull or plug of 4 Event_Class | Fault_ID
modules
8 0 0
TI_StationFailure - OB: Rack or station 4 Event_Class | Fault_ID
failure
8 0 0
Same for OBs: Status, Update, Profile, 12 0
Diagnostic error interrupt, Pull or plug of
modules, Rack or station failure
16
20 address slv_prfl intr_type
24 flags1 flags2 id
281 manufacturer instance

1 Bytes 28 - 31 (manufacturer and instance) are not used with PROFIBUS.

Note

Refer to the online information system of STEP 7 for more detailed information on TINFO
data.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 397

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.8

D_ACT_DP (Enable/disable PROFINET IO devices)

With the "D_ACT_DP" instruction, you can disable and enable configured PROFINET IO
devices in a targeted manner. In addition, you can determine whether each assigned
PROFINET IO device is currently activated or deactivated.

Note

You can only use the D_ACT_DP instruction with PROFINET 10 devices. You cannot use
the instruction with PROFIBUS DP slaves.

Table 9-84 D_ACT_DP instruction

LAD / FBD SCL Description
"D_ACT_DP_DB" (Use the D_ACT_DP instruction to
D_ACT_DP req:= bool in , disable and enable configured
—EN ENO mode:= usint_in_, PROFINET |0 devices and determine
—REQ RET_VAL laddr:= uint in , whether each assigned PROFINET
MODE BUSY — ret val=> int out , 10 device is currently activated or
LADDR busy=> bool out); deactivated.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "D_ACT_DP_SFB_DB" is the name of the instance DB.

You cannot disable/enable an IE/PB Link PN IO type of gateway using the D_ACT_DP
instruction. If you nevertheless use D_ACT_DP on the gateway named, the CPU returns the
value W#16#8093 (there is no hardware object that can be activated or deactivated for the
address specified in LADDR).

Note

The disabling or enabling job requires several runs through the cycle control point.
Therefore, you cannot wait for the end of such a job in a programmed loop.

Functional description

Application

398

D_ACT_DP is an asynchronous instruction, which means that the job processing extends
over multiple D_ACT_DP instruction executions. You start the job by calling D_ACT_DP with
REQ = 1.

The output parameters RET_VAL and BUSY indicate the status of the job.

If you configure PROFINET 10 devices in a CPU which are not actually present or not
currently required, the CPU nevertheless continues to access these PROFINET 1O devices
at regular intervals. After the devices are deactivated, further CPU accessing stops. The
corresponding error events no longer occur.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions
9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Examples

From a machine OEM's point of view, there are numerous device options possible in series
production of machines. However, each delivered machine includes only one combination of
selected options.

The manufacturer configures every one of these possible machine options as a PROFINET
10 device. The manufacturer does this in order to create and maintain a common user
program having all possible options. Use D_ACT_DP to deactivate all PROFINET IO devices
not present at machine startup.

A similar situation exists for machine tools having numerous tooling options available, but
actually using only a few of them at any given time. These tools are implemented as
PROFINET 10 devices. With D_ACT_DP, the user program activates the tools currently
needed and deactivates those required later.

Identification of a job

If you have started a deactivation or activation job and you call D_ACT_DP again before the
job is complete, the behavior of the instruction depends on whether or not the new call
involves the same job. If the input parameter LADDR matches, the call is interpreted as a
follow-on call.

Deactivating PROFINET IO devices

When you deactivate a PROFINET IO device with D_ACT_DP, its process outputs are set to
the configured substitute values or to "0" (safe state). The assigned PROFINET 10 controller
does not continue to address this component. The error LEDs on the PROFINET 10

controller or CPU do not identify the deactivated PROFINET IO devices as faulty or missing.

The CPU updates the process image inputs of deactivated PROFINET 10 devices with "0".
Therefore, the CPU treats the deactivated PROFINET IO devices just like failed PROFINET
10 devices.

If you directly access the user data of a previously deactivated PROFINET IO device from
your program, the system behavior depends on the block’s error handling selection:

e |f global error handling is enabled, the system enters an access error start event into the
diagnostic buffer and stays in RUN.

e |f block-local error handling is enabled, the system enters an error cause in the error
structure. You can access the error cause using the GET_ERROR _ID (Page 311)
instruction.

An error for a read access returns "0". Refer to "Event execution priorities and queuing"
(Page | 105) for further information on error handling.

If you attempt to access a deactivated PROFINET 10 device using an instruction (such as
"RD_REC|(Page|385)"), you receive the same error information in RET_VAL as for an
unavailable PROFINET IO device.

If a PROFINET IO station fails after you have deactivated it with D_ACT_DP, the operating
system does not detect the failure.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 399

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Activating PROFINET 1O devices

Parameters

When you reactivate a PROFINET 10 device with D_ACT_DP, the associated PROFINET 10
controller configures the component and assigns parameters (as with the return of a failed
PROFINET |0 station). This activation is complete when the component is able to transfer
user data.

If you try to activate a PROFINET 10 device that cannot be accessed (for example, because
it was physically separated from the bus) with a D_ACT_DP instruction, the instruction
returns the error code W#16#80A7 after expiration of the configured parameter assignment
time for distributed 1/0. The PROFINET 10 device is activated and the fact that the activated
PROFINET IO device cannot be accessed results in a corresponding display in the system
diagnostics.

If the PROFINET 10 device is accessible again afterwards, this results in standard system
behavior.

Note

Activating a PROFINET IO device can be time-consuming. If you want to cancel a currently
running activation job, start D_ACT_DP with the same value for LADDR and MODE = 2. You
repeat the call for D_ACT_DP with MODE = 2 until the successful cancellation of the
activation job is displayed with RET_VAL = 0.

The following table shows the parameters of the D_ACT_DP instruction:

Parameter

Declara-
tion

Data type

Description

REQ

IN

Bool

Level-triggered control parameter
REQ = 1: Run activation or deactivation

MODE

IN

USint

Job identifier
Possible values:

¢ 0: Request information on whether the addressed component
is activated or deactivated (output using RET_VAL parameter)

e 1: Activate the PROFINET IO device
e 2: Deactivate the PROFINET IO device

LADDR

N

HW_DEVICE

Hardware identifier of the PROFINET IO device (HW_Device)

The number can be taken from the properties of the PROFINET IO
device in the Network view or from the "System constants" tab of
the standard tag table.

If both the identifier for the device diagnostics as well as the ID for
operating state transitions are specified there, you must use the
code for the device diagnostics.

400

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameter | Declara- | Data type Description
tion
RET_VAL |OUT Int If an error occurs while the program executes the instruction, the
return value contains an error code.
BUSY ouT Bool Active code:

e BUSY =1:The job is still active.
e BUSY = 0: The job was terminated.

Parameter RET_VAL

Error code* | Explanation

(W#16#...)

0000 Job completed without error.

0001 The PROFINET IO device is active (this error code is only possible with MODE = 0.)

0002 The PROFINET IO device is deactivated (this error code is only possible with
MODE =0.)

7000 First call with REQ = 0: The job specified in LADDR is not active; BUSY has the value
IIOII'

7001 First call with REQ = 1. The program triggered the job specified in LADDR. BUSY has
the value "1".

7002 Intermediate call (REQ irrelevant). The activated job is still active; BUSY has the val-
ue Il1ll'

8090 ¢ You have not configured a module with the address specified in LADDR.

e You operate your CPU as I-slave / I-device, and you have specified an address of
this I-slave/I-device in LADDR.

8092 The deactivation of the currently addressed PROFINET 10 device (MODE = 2) cannot
be canceled by being activated (MODE = 1). Activate the component at a later time.

8093 The address specified in LADDR does not belong to any PROFINET 10 device that
can be activated or deactivated, or the MODE parameter is unknown.

8094 You have attempted to activate a device which is a potential partner for a tool change
port. However, another device is already activated on this tool change port at this
time. The activated device remains activated.

80A0 Error during the communication between the CPU and the 10 controller.

80A1 Parameters cannot be assigned for the addressed component. (This error code is
only possible when MODE = 1.)
Note: If this component fails again during parameter assignment of the activated de-
vice, the D_ACT_DP instruction supplies the error information. If the parameter as-
signment of a single module is unsuccessful, D_ACT_DP returns the error information
W#16#0000.

80A3 The PROFINET IO controller concerned does not support this function.

80A4 The CPU does not support this function for an external PROFINET 10O controller.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 401

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

402

Error code* | Explanation
(W#16#...)
80A6 Slot error in the PROFINET IO device; not all user data can be accessed (this error
code is only available when MODE = 1).
Note: D_ACT_DP returns this error information only if the activated component fails
again after parameter assignment and before the end of the D_ACT_DP instruction
execution. If only a single module is unavailable, D_ACT_DP returns the error infor-
mation W#16#0000.
80A7 A timeout occurred during activation: The remote device is unreachable, or you have
set the parameter assignment time for central and distributed 1/O too short. The status
of the remote device is "activated", but it is not accessible.
80AA Activation with errors in the PROFINET 1O device: Differences in the configuration
80AB Activation with errors in the PROFINET IO device: Parameter assignment error
80AC Activation with errors in the PROFINET 1O device: Maintenance required
80C1 D_ACT_DP has started and is being continued with another address (this error code
is possible when MODE = 1 and MODE = 2).
80C3 e Temporary resource error: The CPU is currently processing the maximum possible
activation and deactivation jobs (8). (This error code is only possible when
MODE = 1 and MODE = 2))
e The CPU is busy receiving a modified configuration. Currently, you cannot ena-
ble/disable PROFINET IO devices.
80C6 PROFINET: Jobs not collected by the user are discarded at restart.
General error | See the GET_ERROR_ID (Page 311) instruction for information on how to access the
information error.

* The error codes in the program editor can be displayed as integer or hexadecimal values.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.9 STATUS parameter for RDREC, WRREC, and RALRM

The output parameter STATUS contains error information that is interpreted as ARRAY[1...4]

OF BYTE, with the following structure:

Table 9- 85 STATUS output array

Array element Name Description
STATUS[1] Function_Num |« B#16#00, if no error
e Function ID from DPV1-PDU: If an error occurs, B#16#80 is OR'ed (for read

data record: B#16#DE; for write data record: B#16#DF). If no DPV1 protocol
element is used, then B#16#CO0 will be output.

STATUS[2] Error_Decode Location of the error ID

STATUS[3] Error_Code_1 Error ID

STATUS[4] Error_Code_2 Manufacturer-specific error ID expansion

Table 9- 86 STATUS[2] values

Error_decode Source Description

(B#16#....)

00 to 7F CPU No error or no warning

80 DPV1 Error according to IEC 61158-6

81 to 8F CPU B#16#8x shows an error in the "xth" call parameter of the instruction.
FE, FF DP Profile Profile-specific error

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

403

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Table 9- 87 STATUS[3] values

Error_decode Error_code_1 Explanation (DVP1) Description
(B#16#....) (B#16#....)
00 00 No error, no warning
70 00 Reserved, reject Initial call; no active data record transfer
01 Reserved, reject Initial call; data record transfer has started
02 Reserved, reject Intermediate call; data record transfer already active
80 90 Reserved, pass Invalid logical start address

92 Reserved, pass lllegal type for Variant pointer

93 Reserved, pass The DP component addressed via ID or F_ID is not con-
figured.

96 The "RALRM (Page 394)" cannot supply the OB start
information, management information, header infor-
mation, or additional interrupt information.

For the following OBs, you can use the "{DPNRM_DG

(Page 416)" instruction to read the current diagnostics

message frame of the relevant DP slave asynchronously

(address information from OB start information):

e Hardware interrupt/(Page|95)

e Status/(Page 102), Update (Page 103) or Profile
(Page|103)

e Diagnostic error interrupt|(Page 97)

e Pull or plug of modules (Page|100)

A0 Read error Negative acknowledgement while reading from the mod-
ule

A1 Write error Negative acknowledgement while writing to the module

A2 Module failure DP protocol error at layer 2 (for example, slave failure or
bus problems)

A3 Reserved, pass e PROFIBUS DP: DP protocol error with Direct-Data-

Link-Mapper or User-Interface/User
o PROFINET IO: General CM error

A4 Reserved, pass Communication on the communication bus disrupted

A5 Reserved, pass -

A7 Reserved, pass DP slave or modules is occupied (temporary error).

A8 Version conflict DP slave or module reports non-compatible versions.

A9 Feature not supported | Feature not supported by DP slave or module

AA to AF User specific DP slave or module reports a manufacturer-specific error
in its application. Please check the documentation from
the manufacturer of the DP slave or module.

BO Invalid index Data record not known in module; illegal data record
number = 256

S7-1200 Programmable controller
404 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Error_decode
(B#16#....)

Error_code_1
(B#16#....)

Explanation (DVP1)

Description

B1

Write length error

The length information in the RECORD parameter is
incorrect.

e With "RALRM": Length error in AINFO

Note: Refer to the online information system of
STEP 7 for immediate access to information on how
to interpret the "AINFQO" returned buffers.

e With 'RDREC (Page|385)" and 'WRREC
(Page|385)": Length error in "MLEN"

B2

Invalid slot

The configured slot is not occupied.

B3

Type conflict

Actual module type does not match specified module
type.

B4

Invalid area

DP slave or module reports access to an invalid area.

B5

Status conflict

DP slave or module not ready

B6

Access denied

DP slave or module denies access.

B7

Invalid range

DP slave or module reports an invalid range for a param-
eter or value.

B8

Invalid parameter

DP slave or module reports an invalid parameter.

B9

Invalid type

DP slave or module reports an invalid type:
e With '/RDREC (Page|385)": Buffer too small (subsets
cannot be read)

o With 'WRREC (Page 385)": Buffer too small (subsets
cannot be written)

BA to BF

User specific

DP slave or module reports a manufacturer-specific error
when accessing. Please check the documentation from
the manufacturer of the DP slave or module.

Co

Read constraint conflict

¢ With 'WRREC (Page| 385)": The data can only be
written when the CPU is in STOP mode.
Note: This means that data cannot be written by the
user program. You can only write the data online with
a PG/PC.

o With '/RDREC (Page|385)": The module routes the
data record, but either no data is present or the data
can only be read when the CPU is in STOP mode.
Note: If data can only be read when the CPU is in
STOP mode, no evaluation by the user program is
possible. In this case, you can only read the data
online with a PG/PC.

C1

Write constraint conflict

The data of the previous write request to the module for
the same data record has not yet been processed by the
module.

C2

Resource busy

The module is currently processing the maximum possi-
ble number of jobs for a CPU.

C3

Resource unavailable

The required operating resources are currently occupied.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

405

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Error_decode Error_code_1 Explanation (DVP1) Description
(B#16#....) (B#16#....)

C4 Internal temporary error. Job could not be carried out.
Repeat the job. If this error occurs often, check your
installation for sources of electrical interference.

C5 DP slave or module not available

C6 Data record transfer was cancelled due to priority class
cancellation.

C7 Job aborted due to warm or cold restart on the DP mas-
ter.

C8to CF DP slave or module reports a manufacturer-specific re-
source error. Please check the documentation from the
manufacturer of the DP slave or module.

Dx User specific DP Slave specific. Refer to the description of the DP
Slave.

81 00 to FF Error in the initial call parameter (with "RALRM
(Page 394)": MODE)

00 lllegal operating mode

82 00 to FF Error in the second call parameter

88 00 to FF Error in the eighth call parameter (with '/RALRM
(Page 394)": TINFO)
Note: Refer to the online information system of STEP 7
for immediate access to information on how to interpret
the "TINFO" returned buffers.

01 Wrong syntax ID

23 Quantity structure exceeded or destination area too small

24 Wrong range ID

32 DB/DI number out of user range

3A DB/DI number is NULL for area ID DB/DI, or specified
DB/DI does not exist.

89 00 to FF Error in the ninth call parameter (with '/RALRM
(Page 394)": AINFO)
Note: Refer to the online information system of STEP 7
for immediate access to information on how to interpret
the "AINFO" returned buffers.

01 Wrong syntax ID

23 Quantity structure exceeded or destination area too small

24 Wrong range ID

32 DB/DI number out of user range

3A DB/DI number is NULL for area ID DB/DI, or specified
DB/DI does not exist.

8A 00 to FF Error in the 10th call parameter
8F 00 to FF Error in the 15th call parameter
FE, FF 00 to FF Profile-specific error
S7-1200 Programmable controller
406 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions
9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Array element STATUS[4]

With DPV1 errors, the DP Master passes on STATUS[4] to the CPU and to the instruction.
Without a DPV1 error, this value is set to 0, with the following exceptions for the RDREC:

e STATUSI[4] contains the target area length from RECORD, if MLEN > the destination
area length from RECORD.

o STATUS[4]=MLEN, if the actual data record length < MLEN < the destination area length
from RECORD.

e STATUS[4]=0, if STATUS[4] > 255; would have to be set
In PROFINET IO, STATUS[4] has the value 0.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 407

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.10

9.3.10.1

Others

DPRD_DAT and DPWR_DAT (Read/write consistent data)

Use the DPRD_DAT (Read consistent data) instruction to read one or more bytes of data

consistently, and use the DPWR_DAT (Write consistent data) instruction to transfer one or
more bytes of data consistently. You can use the DPRD_DAT and DPWR_DAT instructions
with PROFINET and PROFIBUS.

Table 9- 88 DPRD_DAT and DPWR_DAT instructions

LAD / FBD

SCL

Description

DFAD_DAT

- EN
LADDR

ENO -
RET_WAL
RECORD

ret_val := DPRD_DAT(
laddr:= word in _,
record=> variant out_);

Use the DPRD_DAT instruction to read one or more
bytes of data from modules or submodules of one of
the following locations:

e Local base I/O
e DPslave

e PROFINET I/O device

The CPU transfers the data read consistently. If no
errors occur during the data transfer, the CPU enters
the read data into the target area set up by the
RECORD parameter. The target area must have the
same length as you configured with STEP 7 for the
selected module. When you execute the DPRD_DAT
instruction, you can only access the data of one
module or submodule. The transfer starts at the
configured start address.

DFwWR_DAT

—EN
LADDR
RECORD

END —
RET_VAL

ret_val := DPWR_DAT (
laddr:= word in _,
record:=_variant_in_);

Use the DPWR_DAT instruction to transfer the data
in RECORD consistently to the following locations:

e Addressed module or submodule in the local
base

e DP standard slave

e PROFINET I/O device

The source area must have the same length as you
configured with STEP 7 for the selected module or
submodule.

408

The S7-1200 CPU supports consistent peripheral I/O read or write of 1, 2, or 4 bytes. Use
the DPRD_DAT instruction to consistently read and the DPWR_DAT instruction to
consistently write data of lengths other than 1, 2, or 4 bytes.

You can use these instructions for data areas of 1 or more bytes. If the access is rejected,

error code W#16#8090 results.

PROFINET supports up to 1024 bytes of consistent data. You do not need to use these
instructions for consistent transfers between the S7-1200 and PROFINET devices.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

Table 9- 89

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Note

If you are using the DPRD_DAT and DPWR_DAT instructions with consistent data, you must
remove this consistent data from the process-image automatic update. Refer to"PLC
concepts: Execution of the user program"|(Page 83) for more information.

Parameters

Parameter

Declaration

Data type

Description

LADDR

IN

HW_IO (Word)

Hardware ID of the module from which the data is to be read.
(DPRD_DAT)

Hardware ID of the module to which the data is to be written.
(DPWR_DAT)

The hardware ID can be found in the properties of the module in the device
view or system constants.

RECORD

ouT

Variant

Destination area for the user data that were read (DPRD_DAT) or source
area for the user data to be written (DPWR_DAT). This must be exactly as
large as you configured for the selected module with STEP 7.

RET_VAL

ouT

Int

If an error occurs while the function is active, the return value contains an
error code.

DPRD_DAT operations

S7-1200 Programmable controller

Use the parameter LADDR to select the module of the DP standard slave / PROFINET IO
device. If an access error occurs on the addressed module, the error code W#16#8090 is

output.

Use the parameter RECORD to define the target range of the read data:

® The target range has to be at least as long as the inputs of the selected module. Only the
inputs are transferred; the other bytes are not considered. If you read from a DP standard
slave with a modular configuration or with several DP identifiers, you can only access the
data of a module of the configured hardware identifier for each DPRD_DAT instruction
call. If you select a target range that is too small, the error code W#16#80B1 is output at
the RET_VAL parameter.

® The following data types can be used: Byte, Char, Word, DWord, Int, UInt, USInt, Sint,
Dint, UDInt. The use of these data types in a User Defined Type (UDT) data structure of
the type ARRAY or STRUCT is permissible.

® The data type STRING is not supported.

® [f there was no error during the data transmission, the data that have been read are
entered in the target range defined at the parameter RECORD.

System Manual, V4.2, 09/2016, ASE02486680-AK

409

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

DPWR_DAT operations

Error codes

Use the parameter LADDR to select the module of the DP standard slave / PROFINET 10
device. If an access error occurs on the addressed module, the error code W#16#8090 is
output.

Use the parameter RECORD to define the source range of the data to be written:

e The source range has to be at least as long as the outputs of the selected module. Only
the outputs are transferred; the other bytes are not considered. If the source range at the
parameter RECORD is longer than the outputs of the configured module, only the data up
to the maximum length of the outputs is transferred. If the source range at the parameter
RECORD is shorter than the outputs of the configured module, the error code
W#16#80B1 is output at the RET_VAL parameter.

e The following data types can be used: Byte, Char, Word, DWord, Int, Ulnt, USInt, Sint,
Dint, UDInt. The use of these data types in a User Defined Type (UDT) data structure of
the type ARRAY or STRUCT is permissible.

® The data type STRING is not supported.

e The data is transferred synchronously, that is, the write process is completed when the
instruction is completed.

Table 9- 90 DPRD_DAT and DPWR_DAT error codes

Error code 1 Description

0000 No error occurred

8090 One of the following cases apply:
¢ You have not configured a module for the specified logical base address.
¢ You have ignored the restriction concerning the length of consistent data.
e You have not entered the start address in the LADDR parameter in hexadecimal format.

8092 The RECORD parameter supports the following data types: Byte, Char, Word, DWord, Int, Ulnt,
USint, Sint, DInt, UDInt, and arrays of these types.

8093 No DP module/PROFINET IO device from which you can read (DPRD_DAT) or to which you can
write (DPWR_DAT) consistent data exists at the logical address specified in LADDR.

80A0 Access error detected while the 1/O devices were being accessed (DPRD_DAT).

80B1 The length of the specified destination (DPRD_DAT) or source (DPWR_DAT) area is not identical to
the user data length configured with STEP 7 Basic.

80B2 System error with external DP interface module (DPRD_DAT) and (DPWR_DAT)

1 When displaying the DPRD_DAT and DPWR_DAT error codes, use the Word data type.

410

Note

If you access DPV1 slaves, error information from these slaves can be forwarded from the
DP master to the instruction.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions
9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

9.3.10.2 RCVREC (I-device/l-slave receive data record)

An |-device can receive a data record from a higher-level controller. The receipt takes place
in the user program with the RCVREC instruction (receive data record).

Table 9- 91 RCVREC instruction

LAD / FBD SCL Description
DR "RCVREC_SFB_DB" (Use the RCVREC instruction to re-
"RCVREC_SFE_DE” mode:=_int in , ceive a data record from a higher-
RC\.I'_REC_ F_ID:= uint _in_, level controller.
—EM ENQ — mlen:= uint_in_,
MODE NEW — codel:= byte in _,
F_ID STATUS code2:= byte in ,
MLEMN SLOT new=> bool_out_,
CODE1 SUBSLOT status=> dword out_,
CODEZ INDEX slot=> uint _out_,
RECORD LEN subslot=> uint out_,
index=> uint out_
len=> uint_out_,
rec-
ord:= variant inout);

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "RCVREC_SFB_DB" is the name of the instance DB.

The instruction has the following operating modes:

e Check whether the I-device has a request for a data record receipt
e Make the data record available to the output parameters

e Send an answer to the higher-level controller

You can determine the operating mode executed by the instruction using the input parameter
MODE (see below).

The I-device must be in the RUN or STARTUP mode.

With MLEN, you specify the maximum number of bytes you want to receive. The selected
length of the target range RECORD should have at least the length of MLEN bytes.

If a data record is received (MODE = 1 or MODE = 2), the output parameter NEW indicates
that the data record is stored in RECORD. Note that RECORD has a sufficient length. The
output parameter LEN contains the actual length of the data record received in bytes.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 411

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Set CODE1 and CODEZ2 to zero for the positive answer to the higher-level controller. If the
received data record is to be rejected, enter the negative answer to the higher-level
controller in Error Code 1 of the CODE1 and in Error Code 2 of the CODE2.

Note

If the I-device has received a request for a data record receipt, you must recognize the
delivery of this request within a certain duration. After recognition, you must send an answer
to the higher-level controller within this time period. Otherwise, the I-device experiences a
timeout error which causes the operating system of the I-device to send a negative answer
to the higher-level controller. For information on the value for the time period, refer to the
specifications of your CPU.

The STATUS output parameter receives the error information after the occurrence of an
error.

Operating modes

You can determine the operating mode of the RCVREC instruction with the input parameter
MODE. This step is explained in the following table:

MODE Meaning
0 Check whether a request for a data record receipt exists

If a data record from a higher-level controller exists on the I-device, the instruction only writes to the NEW,
SLOT, SUBSLOT, INDEX, and LEN output parameters. If you call the instruction several times with MODE =
0, then the output parameter only refers to one and the same request.

1 Receiving a data record for any subslot of the I-device

If a data record from a higher-level controller exists on the I-device for any subslot of the I-device, the instruc-
tion writes to the output parameter and transfers the data record to the parameter RECORD.

2 Receiving a data record for a specific subslot of the I-device

If a data record from a higher-level controller exists on the I-device for a specific subslot of the I-device, the
instruction writes to the output parameter and transfers the data record to the parameter RECORD.

3 Sending a positive answer to the higher-level controller

The instruction checks the request of the higher-level controller to receive a data record, accepts the existing
data record, and sends a positive acknowledgment to the higher-level controller.

4 Sending a negative answer to the higher-level controller

The instruction checks the request of the higher-level controller to receive a data record, rejects the existing
data record, and sends a negative acknowledgment to the higher-level controller. Enter the reason for the
rejection in the input parameters CODE1 and CODE2.

Note

After the receipt of a data record (NEW = 1), you must call the RCVREC instruction twice to
ensure complete processing. You must do this in the following order:

e First call with MODE =1 or MODE = 2

e Second call with MODE = 3 or MODE =4

S7-1200 Programmable controller
412 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameters
The following table shows the parameters of the RCVREC instruction:
Parameter | Declara- | Data type Description
tion

MODE IN Int Mode

F_ID IN HW_SUBMODULE Subslot in the transfer area of the I-device for the data record to
be received (only relevant for MODE = 2). The high word is always
set to zero.

MLEN IN Int Maximum length of the data record to be received in bytes

CODE1 IN Byte Zero (for MODE = 3) and/or Error Code 1 (for MODE = 4)

CODE2 IN Byte Zero (for MODE = 3) and/or Error Code 2 (for MODE = 4)

NEW out Bool e MODE = 0: New data record was received
¢ MODE = 1 or 2: Data record was transferred to RECORD

STATUS |OUT DWord Error information. Refer to|"STATUS parameter" (Page|403) for
more information.

SLOT ouT HW_SUBMODULE Identical to F_ID

SUBSLOT | OUT HW_SUBMODULE Identical to F_ID

INDEX ouT Ulint Number of the data record received

LEN ouT Ulnt Length of the data record received

RECORD | IN_OUT Variant Target range for the data record received

9.3.10.3 PRVREC (l-device/l-slave make data record available)

An |-device can receive a request from a higher-level controller to make a data record
available. The I-device makes the data record available in the user program with the
PRVREC instruction (make data record available).

Table 9- 92 PRVREC instruction

LAD / FBD

SCL

Description

*PRVREC_SFE_DE"

B2

—EN
MODE
F_ID
CODE1
CODEZ
LEN
RECORD

PRVREC

SUBSLOT

ENO =
NEW—
STATUS
5LOT

INDEX
RLEM

"PRVREC_SFB_DB" (
mode:=_int_in_,
F_ID:= uint in ,
codel:= byte_ in_,

code2:= byte_in _,

len:= uint_in_,

new=> bool_out_,
status=>_ dword_out_,

slot=> uint_out_,

subslot=> uint_out_,

index=> uint out_

rlen=> uint out ,

rec-

ord:= variant inout);

Use the PRVREC instruction to re-
ceive a request from a higher-level
controller to make a data record
available.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "PRVREC_SFB_DB" is the name of the instance DB.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK

413

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

414

The instruction has the following operating modes:

® Check whether the I-device has a request for making a data record available
e Transfer the requested data record to the higher-level controller

® Sending an answer to the higher-level controller

You can determine the operating mode executed by the instruction using the input parameter
MODE (see below).

The I-device must be in the RUN or STARTUP mode.

Enter the maximum number of bytes the data record to be sent should have with LEN. The
selected length of the target range RECORD should have at least the length of LEN bytes.

If a request to make a data record available exists, (MODE = 0), the output parameter NEW
is set to TRUE.

If the request for making a data record available is accepted, write RECORD for the positive
answer to the higher-level controller with the requested data record and write zero for
CODE1 and CODE?2. If the request for making a data record available is to be rejected, enter
the negative answer to the higher-level controller in Error Code 1 of the CODE1 and in Error
Code 2 of the CODE2.

Note

If the I-device has received a request for making a data record available, you must recognize
the delivery of this request within a certain time period. After recognition, you must send an
answer to the higher-level controller within this time period. Otherwise, the I-device
experiences a timeout error which causes the operating system of the I-device to send a
negative answer to the higher-level controller. For information on the value for the time
period, refer to the specifications of your CPU.

The STATUS output parameter receives the error information after the occurrence of an
error.

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Operating modes

You can determine the operating mode of the PRVREC instruction with the input parameter
MODE. This step is explained in the following table:

MODE

Meaning

Check whether a request for making a data record available exists

If a request from a higher-level controller for making a data record available exists on the |-device, the instruc-
tion only writes to the NEW, SLOT, SUBSLOT, INDEX, and RLEN output parameters. If you call the instruction
several times with MODE = 0, then the output parameter only refers to one and the same request.

Receiving a request for making a data record available for any subslot of the I-device

If such a request from a higher-level controller for any subslot of the I-device exists on the |-device, the instruc-
tion writes to the output parameter.

Receiving a request for making a data record available for a specific subslot of the |-device

If such a request from a higher-level controller for a specific subslot of the I-device exists on the I-device, the
instruction writes to the output parameter.

Make the data record available and send a positive answer to the higher-level controller

The instruction checks the request of the higher-level controller to make a data record available, makes the
request data record available to RECORD, and sends a positive acknowledgement to the higher-level control-
ler.

Sending a negative answer to the higher-level controller

The instruction checks the request of the higher-level controller to make a data record available, rejects this
request, and sends a negative acknowledgement to the higher-level controller. Enter the reason for the rejec-
tion in the input parameters CODE1 and CODE2.

Note

After the receipt of a request (NEW = 1), you must call the PRVREC instruction twice to
ensure complete processing. You must do this in the following order:

e First call with MODE = 1 or MODE = 2

e Second call with MODE = 3 or MODE = 4

S7-1200 Programmable controller
System Manual, V4.2, 09/2016, A5E02486680-AK 415

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameters
The following table shows the parameters of the PRVREC instruction:
Parameter | Declara- | Data type Description
tion

MODE IN Int Mode

F_ID IN HW_SUBMODULE Subsilot in the transfer area of the I-device for the data record to be
sent (only relevant for MODE = 2). The high word is always set to
zero.

CODE1 IN Byte Zero (for MODE = 3) and/or Error Code 1 (for MODE = 4)

CODE2 IN Byte Zero (for MODE = 3) and/or Error Code 2 (for MODE = 4)

LEN IN Ulnt Maximum length of the data record to be sent in bytes

NEW ouT Bool The new data record was requested by the higher-level controller.

STATUS |OUT DWord Error information. Refer to|"STATUS parameter"|(Page|403) for
more information.

SLOT ouT HW_SUBMODULE Identical to F_ID

SUBSLOT | OUT HW_SUBMODULE Identical to F_ID

INDEX ouT Ulnt Number of the data record to be sent

RLEN ouT Ulnt Length of the data record to be sent

RECORD | IN_OUT Variant Data record made available

9.3.10.4 DPNRM_DG (Read diagnostic data from a PROFIBUS DP slave)

You can use the DPNRM_DG (Read diagnostic data) instruction with PROFIBUS.

Table 9- 93 DPNRM_DG instruction

LAD/FBD |SCL Description
R E T ret_val := DPNRM DG(Use the DPNRM_DG instruction to read the current diagnostic data of
g e req:= bool in_, a DP slave in the format specified by EN 50 170 Volume 2,
| ﬁ;m E;E?f, laddr:= word in_, PROFIBUS. The data that has been read is entered in the destination
PET_VAL record=> variant out , area indicated by RECORD following error-free data transfer.
busy=> bool out);
S7-1200 Programmable controller
416 System Manual, V4.2, 09/2016, ASE02486680-AK

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Table 9- 94 DPNRM_DG instruction data types for the parameters

Parameter and type Data type Description

REQ IN Bool REQ=1: Read request

LADDR IN HW_DPSLAVE | Configured diagnostic address of the DP slave: Must be the address of
the station and not for the 1/0 device. Select the station (and not the
image of the device) in the "Network" view of the "Device configuration"
to determine the diagnostic address.

Enter the addresses in hexadecimal format. For example, diagnostic
address 1022 means LADDR:=W#16#3FE.

RET_VAL ouT Int If an error occurs while the function is active, the return value contains
an error code. If no error occurs, the length of the data actually trans-
ferred is entered in RET_VAL.

RECORD ouT Variant Destination area for the diagnostic data that were read. The minimum
length of the data record to be read (or the destination area) is 6 bytes.
The maximum length of the data record to be sent is 240 bytes.
Standard slaves can provide more than 240 bytes of diagnostic data up
to a maximum of 244 bytes. In this case, the first 240 bytes are trans-
ferred to the destination area, and the overflow bit is set in the data.

BUSY ouT Bool BUSY=1: The read job is not yet completed

You start the read job by assigning 1 to the input parameter REQ in the DPNRM_DG
instruction call. The read job is executed asynchronously, in other words, it requires several
DPNRM_DG instruction calls. The status of the job is indicated by the output parameters
RET_VAL and BUSY.

Table 9- 95 Slave diagnostic data structure

Byte Description

0 Station status 1

1 Station status 2

2 Station status 3

3 Master station number

4 Vendor ID (high byte)

5 Vendor ID (low byte)

6.. Additional slave-specific diagnostic information

S7-1200 Programmable controller

System Manual, V4.2, 09/2016, ASE02486680-AK

417

Extended instructions

9.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Table 9- 96 DPNRM_DG instruction error codes

Error code Description Restriction
0000 No error -
7000 First call with REQ=0: No data transfer active; BUSY has the value 0. -
7001 First call with REQ =1: No data transfer active; BUSY has the value 1. Distributed 1/0Os
7002 Interim call (REQ irrelevant): Data transfer already active; BUSY has the Distributed 1/Os
value 1.
8090 Specified logical base address invalid: There is no base address. -
8092 The RECORD parameter supports the following data types: Byte, Char, -
Word, DWord, Int, Ulnt, USInt, Sint, Dint, UDInt, and arrays of these types.
8093 o This instruction is not permitted for the module specified by LADDR -
(S7-DP modules for S7-1200 are permitted).
o LADDR specifies the I/O device instead of specifying the station. Select
the station (and not the image of the device) in the "Network" view of
the "Device configuration" to determine the diagnostic address for
LADDR.
80A2 ¢ DP protocol error at layer 2 (for example, slave failure or bus problems) | Distributed 1/Os
e For ET200S, data record cannot be read in DPV0O mode.
80A3 DP protocol error with user interface/user Distributed 1/0s
80A4 Communication problem on the communication bus The error occurs between the
CPU and the external DP
interface module.
80B0 e The instruction is not possible for module type. -
e The module does not recognize the data record.
e Data record number 241 is not permitted.
80B1 The length specified in the RECORD parameter is incorrect. Specified length > record
length
80B2 The configured slot is not occupied. -
80B3 Actual module type does not match the required module type. -
80CO0 There is no diagnostic information. -
80C1 The data of the previous write job for the same data record on the module | -
have not yet been processed by the module.
80C2 The module is currently processing the maximum possible number of jobs | -
for a CPU.
80C3 The required resources (memory, etc.) are currently occupied. -
80C4 Internal temporary error. The job could not be processed. -
Repeat the job. If this error occurs frequently, check your system for elec-
trical disturbance sources.
80C5 Distributed 1/0Os not available Distributed 1/0s
80C6 Data record transfer was stopped due to a priority class abort (restart or Distributed 1/Os
background)
8xyy! General error codes
Refer to "Extended instructions, Distributed I/O: Error information for RDREC, WRREC, and
RALRM" (Page|403) for more information on general error codes.
S7-1200 Programmable controller
418 System Manual, V4.2, 09/2016, A5SE02486680-AK

Extended instructions

9.4 PROFlenergy

9.4 PROFlenergy

PROFIlenergy is a manufacturer- and device-neutral profile for energy management with
PROFINET. To reduce electricity consumption during breaks in production and unplanned
interruptions, it is possible to shut down equipment in a coordinated and centralized manner
using PROFlenergy.

The PROFINET IO controller switches off the PROFINET devices/power modules using
special commands in the user program. You require no additional hardware. The PROFINET
devices interpret the PROFlenergy commands directly.

The S7-1200 CPU does not support the PE controller functionality. The S7-1200 CPU can
only act as a PROFlenergy entity (with I-device functionality).

PROFlenergy controller (PE controller)

The PE controller is a higher-level CPU (for example, an S7-1500) that activates or
deactivates the idle state of lower-level devices. The PE controller deactivates and
reactivates specific production components or complete production lines using the user
program. Lower-level devices receive commands from the user program through
corresponding instructions (function blocks).

The user program sends the commands using the PROFINET communication protocol. The
PE command can be either a control command to switch a PE entity to the energy-saving
mode, or a command to read a status or measured value.

You use the PE_I_DEV instruction to request data from a module. The user program has to
determine what information is being requested by the PE controller and retrieve it from the
energy module using data records. The module itself does not directly support the PE
commands. The module stores the energy measurement information in a shared area, and
the lower-level CPU (for example, an S7-1200) triggers the PE_I_DEYV instruction to return it