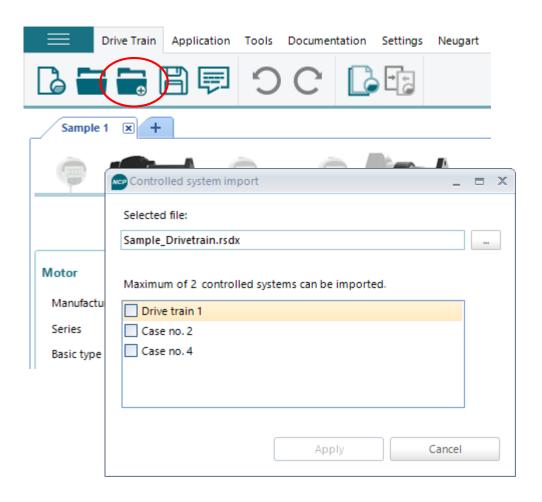
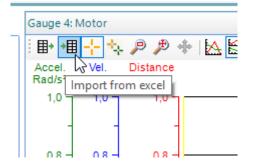
Neugart Calculation Program



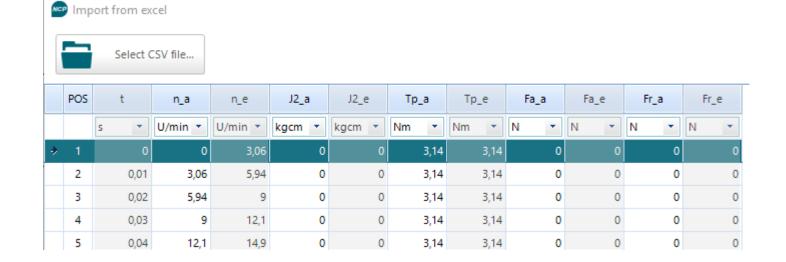
Drive train – adding existing ones

- Add drive trains of NCP 3.x (.rsd) or NCP 4.x to the exisiting project
- Ideal for comparison of new and old dimensionings



Custom load input – data import

- Import motor trace files at the motor gauge directly
 - Choose "General load case"
 - Choose gearbox
 - Click on gauge 4
 - In the diagramm you can select "Import from Excel"



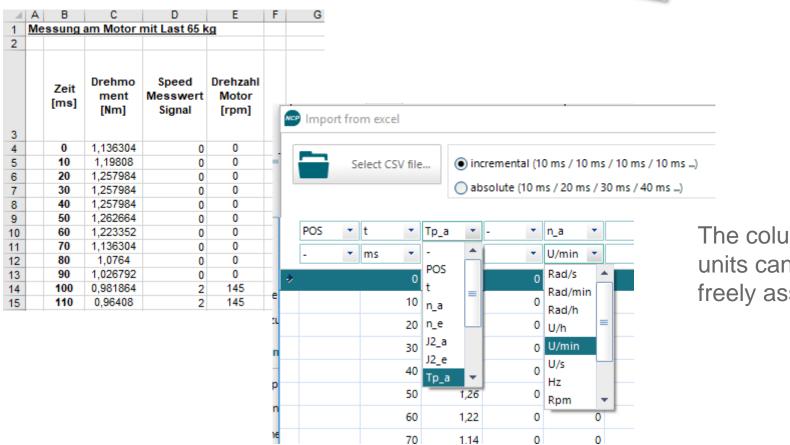
Custom load input – data import

NCP 4.1

Data structure must be adhered to.

	Α	В	С	D	E	F	G	Н	I	J	K	L
1	POS	t	n_a	n_e	J2_a	J2_e	Tp_a	Тр_е	Fa_a	Fa_e	Fr_a	Fr_e
2		S	U/min	U/min	kgcm ²	kgcm ²	Nm	Nm	N	N	N	N
3	1	0	0	3,06	0	0	3,142	3,142	0	0	0	0
4	2	0,01	3,06	5,94	0	0	3,142	3,142	0	0	0	0
5	3	0,02	5,94	9	0	0	3,142	3,142	0	0	0	0
6	4	0,03	9	12,06	0	0	3,142	3,142	0	0	0	0
7	5	0,04	12,06	14,94	0	0	3,142	3,142	0	0	0	0
8	6	0,05	14,94	18	0	0	3,142	3,142	0	0	0	0

NCP[®] 4.2 Features in detail



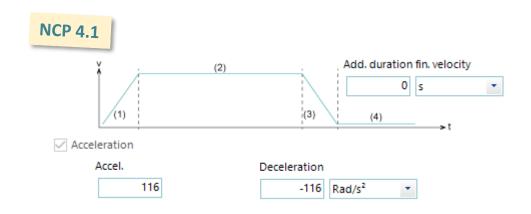
Custom load input – data import

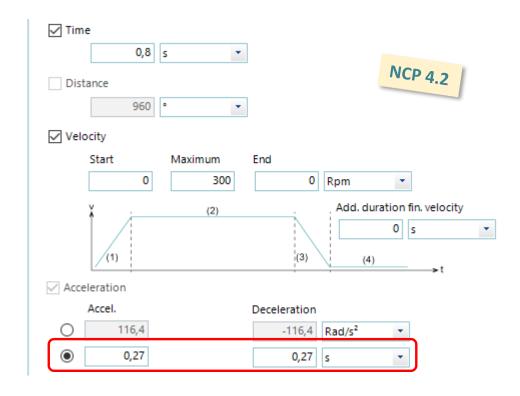
NCP 4.2

No complex preparation of the data is necessary.

The columns and units can be freely assigned.

NCP[®] 4.2 Features in detail



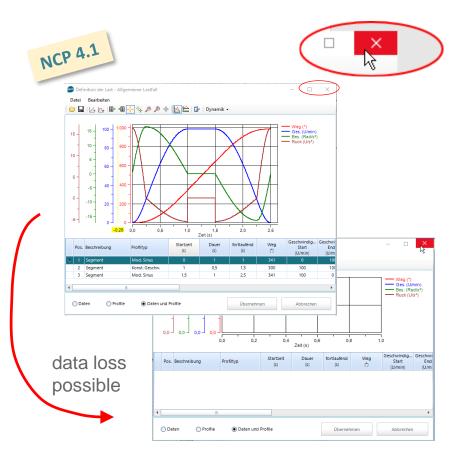


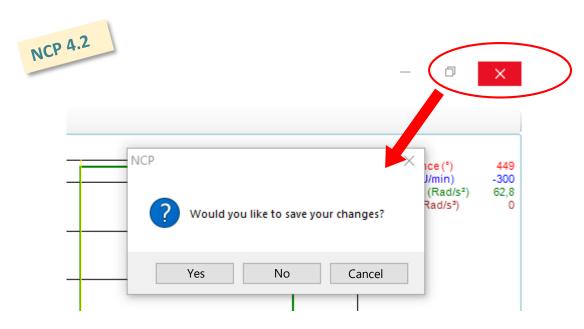
Custom load input – define duration of acceleration

In a movement you can now specify the time in which acceleration is to take place.

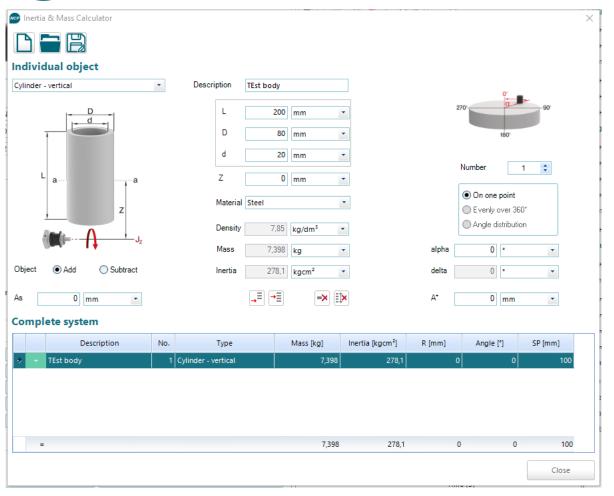
Until now, the acceleration value had to be specified concretely.

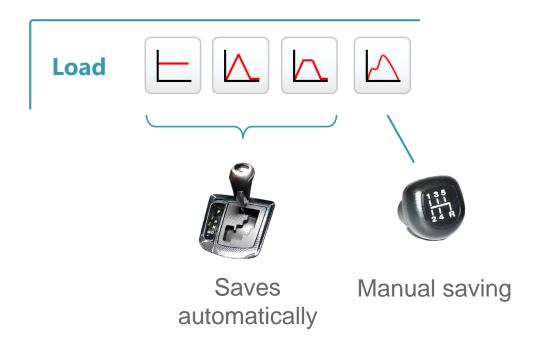
Custom load input: showing cumulated time


Showing the cumulated time of the complete cycle


	Pos.	Description	Profile type	Start time (s)	Period (s)	cumulated (s)
>	1	Motion control	Linear	0	0,5	0,5
				0,5	0,5	1
				1	0,5	1,5
				1,5	0	1,5
	2 Motion control	Linear	1,5	0,5	2	
				2	0,5	2,5
				2,5	0,5	3

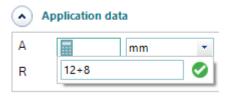
Custom load input – message concerning saving




Closing the custom load input editor gives a message concerning saving the changes.

Mass inertia calculator – saving body in drive train

Previously, only the result was saved in NCP. Now the corresponding body is also stored, so that it can be traced how the mass inertia was calculated. In custom load, the body must still be saved manually.



Overall improvements

Calculator in input fields

It's possible to do calculations within the input fields.

This can be done by clicking on the calculator icon or with the key F2.

Operations which can be done

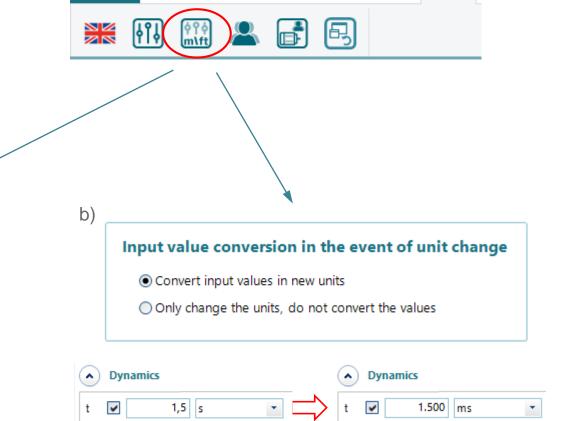
operation	character to use	example
addition	+	5 + 32
subtraction	-	120 – 23
multiplication	*	5 * 23
division	/	120 / 23
brackets	()	(3 + 2) / 2
Power	Pow(x;y) *	$Pow(3;2) \triangleq 3^2$

^{*} Note: it's case-sensitive

Settings

Overall Improvemments

Conversion of input data


You can set whether the input values are to be converted to the new unit after changing the unit or whether they are to remain unchanged.

Input value conversion in the event of unit change

Convert input values in new units

Only change the units, do not convert the values

Drive Train Application Tools Documentation

NCP 4.2

Settings in Windows NCP 4.1 **Customize Format** Numbers Currency Time Date Example Negative: -123,456,789.00 123,456,789.00 Positive: Decimal symbol: No. of digits after decimal: Digit grouping symbol: 123,456,789 Digit grouping: Gearbox 1,500 Rpm n _{2,max} 999.9 Rpm n_{2m} Decimal seperator of 9.75 Nm T_{2,max}

 T_{2m7}

9.75 Nm

Windows is used.

Overall improvements

Decimal sepearator

The decimal seperator can be set up. NCP is no more limitted by the system settings of Windows.

☐ Take over separator from (operating s	ystem		
Decimal mark				
Thousands separator		Gearbox		ı
	,	n _{2,max}	1.500 Rpm	ı
		n _{2,m}	999,9 Rpm	
		T _{2,max}	9,75 Nm	
		T _{2,m7}	9,75 Nm	

However, designer engineers often work with CAD software in which the separator is the point "."

Overall improvements

Showing number of gearbox stages

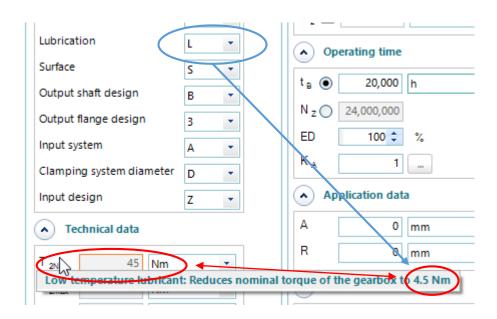
NCP 4.1

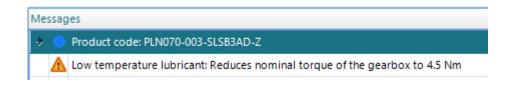
Gearbox		[þ F	AI PDI			
Series		PLQE			↓ ↑		
Frame size	•	060		+	$\downarrow \uparrow$		
Ratio		060		+	-		
\sim							
T _{2N}		44	Nm	+			
T _{2max}		70	Nm	•			
n _{1N}	4	4.500	U/min	+			
n _{1max}	13	3.000	U/min	+			
J ₁	(0,076	kgcm²	•			

This was a wish of many users.

Example:

PLQE060-064: p = 2 PLQE060-060: p = 3 NCP 4.2


Gearbox		•	D F	٨	CA PD	.D F	
Series	F	PLC	(E		+	↓ ↑	
Frame s	ize (060			+	↓ ↑	
Ratio	(060			+	-	
\sim	perties	a				1	
T _{2N}	44	4	Nm		+		
T _{2max}	70	0	Nm		+		
n _{1N}	4,500	0	Rpm		Ψ.		
n _{1max}	13,000	0	Rpm		•		
J ₁	0.076	6	kgcm²		•		
p	:	3)				

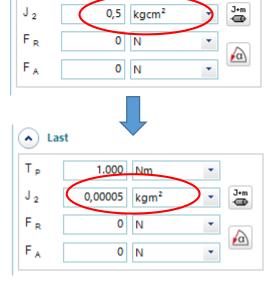

Overall improvements

Deep temperature lubrication

If the gearbox uses deep temperature lubrication the nominal torque can be limitted. This is better visualized in 4.2:

- Additional frame to the nominal torque
- Tooltip at T_{2N}
- Like in 4.1: message in the lower area

NCP[®] 4.2 Features in detail

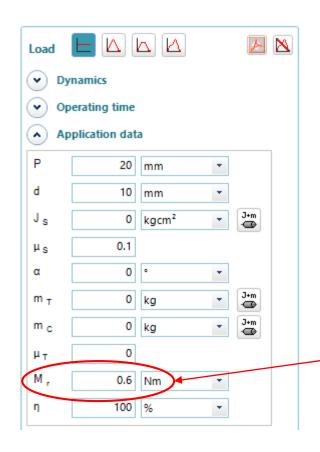

Overall improvements

Decimal place, rounding function

NCP 4.2

1.000 Nm

▲ Last

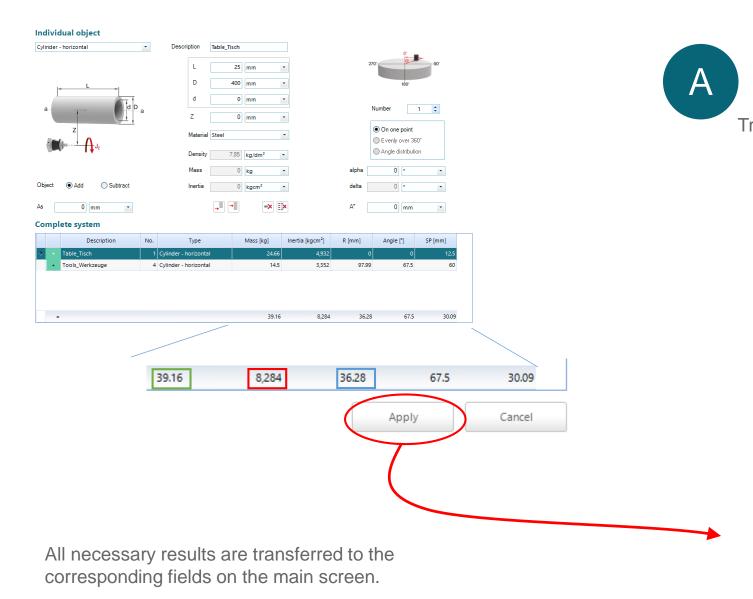

T,

The rounding function in 4.1 sometimes results in an adverse display: 0,00005 is shown as "0". Nevertheless NCP is calculating with the correct value.

Depending on the decimal place NCP shows the correct value.

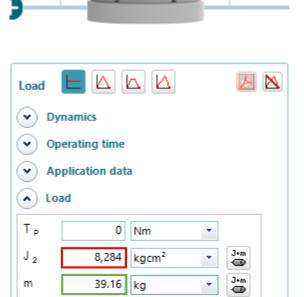
Spindle application

Friction torque


Various manufacturers show the friction torque of their spindles. It is now possible to consider that in NCP.

No-load torque

[Nm]


Туре	with ball bearing	with slide bearing
EP 18	0.30	*
EP 30	0.60	0.75
EP 40	0.70	0.85
EP 50	1.10	1.25
EP 60	1.40	*
EP 80	1.00	*

Rotary table application

Transfer of mass inertia calculator values

36.28 mm

J+m →

NCP 4.1

7.2	1-04	arb	\sim
	170		

Description	Symbol	Value	Unit	Load capacity
Max. output speed	n _{2, max}	100	U/min	2%
Average output speed	n _{2,m}	66,7	U/min	
Maximum output torque	T _{2, max}	1,74	Nm	10%
Average output torque (^7)	T _{2, m7}	1,57	Nm	14%
Max. radial force	F _{R, max}	156	N	
Average radial force	FR, m	133	N	
Max. axial force	F _{Amax}	384	N	
Average axial force	F _{Am}	384	N	
Bearing service life	L _{10h}	122.180	h	16%
Dynamic shaft safety factor	Sd	1,35	-	89%
Static shaft safety factor	Sf	3,61	-	33%
Feather key safety factor	Sp	13,3	-	11%
Thermal capacity	°C	25	-	4%

Average axial force Bearing service life

Thermal capacity

Dynamic shaft safety factor Static shaft safety factor Feather key safety factor Documentation
Visualization of work load

NCP 4.2

Load

2%

capacity

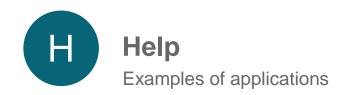
N2, m	66.66	крт	
T _{2, max}	1.735	Nm	10%
T _{2, m7}	1.571	Nm	14%
F _{R, max}	155.8	N	
FR, m	133.2	N	
F _{Amax}	384.2	N	
F _{Am}	384.2	N	
L _{10h}	122,180	h	16%
Sd	1.349	-	89%
Sf	3.614	-	33%
Sp	12.74	-	12%
°C	25	-	4%

Unit

Rpm

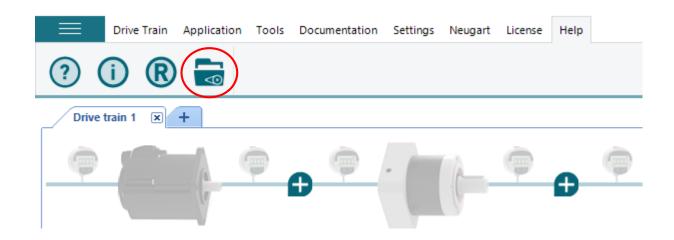
Symbol

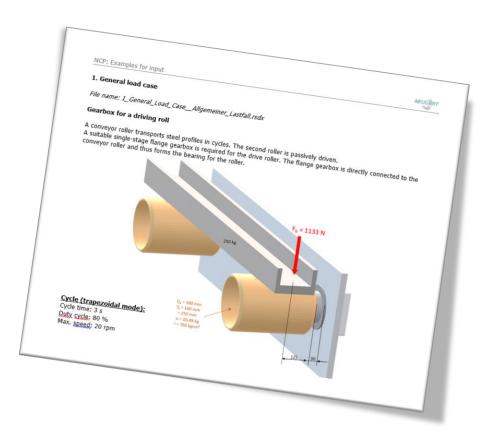
n_{2, max}


Value

100

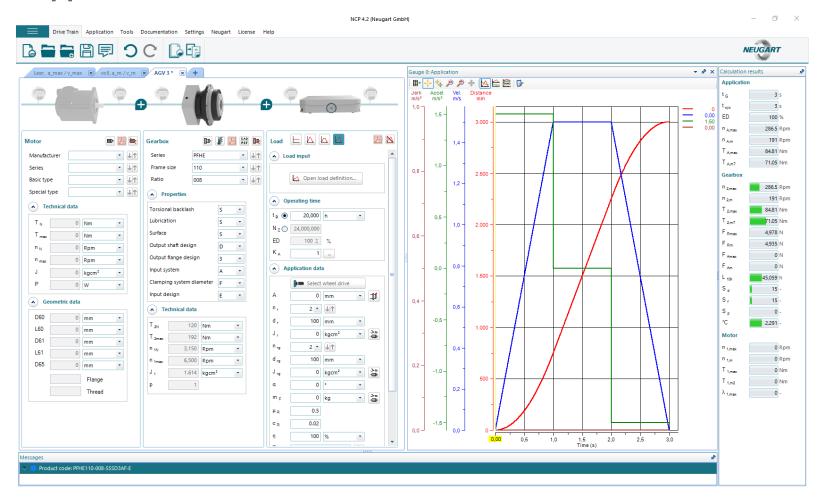
cc cc

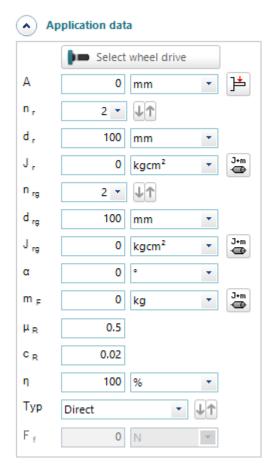

The results are highlighted with color bars.

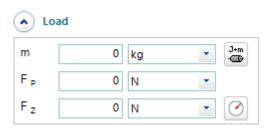


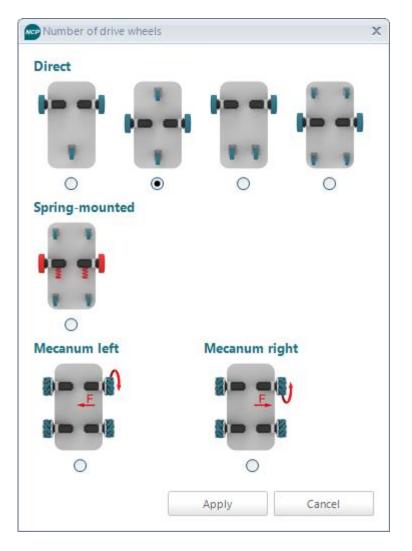
A folder with examples is integrated.

There is one example with solution for each application.




New application: traction drive





New application: traction drive

Thanks for using

